Math, asked by ankushjain6371, 4 months ago

What is the radius of curvature of the curve x4+y4=2 at (1,1)

Answers

Answered by pulakmath007
5

SOLUTION

TO DETERMINE

The radius of curvature of the curve

 \sf{ {x}^{4}  +  {y}^{4} = 2 }

at (1,1)

EVALUATION

Here the given equation of the curve is

 \sf{ {x}^{4}  +  {y}^{4} = 2 }

Differentiating both sides with respect to x we get

 \sf{4 {x}^{3} + 4 {y}^{3}  \: y_1 = 0 }

 \sf{ \implies \:  {x}^{3} +  {y}^{3}  \: y_1 = 0 } \:  \:  \:  \:  \:  \:  -  - (1)

Putting x = 1 & y = 1 we get

 \sf{ \implies \:  {(1)}^{3} +  {(1)}^{3}  \: y_1 = 0 }

 \sf{ \implies \:  \: y_1 =  - 1 }

Again Differentiating equation (1) with respect to x we get

 \sf{ \implies \:  3{x}^{2} +  {y}^{3}  \: y_2 +3 {y}^{2}  \: {y_1}^{2} = 0 } \:

 \sf{Putting \:  \:  x = 1 \: , \:  y = 1, y_1 = - 1  \: we  \:  \: get }

 \sf{ \implies \:  3 +   \: y_2   +  3  = 0 } \:

 \sf{ \implies \:    \: y_2    =  - 6 } \:

Hence the the required radius of curvature at any point (x, y) is

 \displaystyle \sf{ R = \frac{{(1 + {y_1}^{2})}^{ \frac{3}{2} } }{y_2} }

 \displaystyle \sf{  = \frac{{(1 + {y_1}^{2})}^{ \frac{3}{2} } }{y_2} }

 \displaystyle \sf{  = \frac{{(1 + 1)}^{ \frac{3}{2} } }{ - 6} }

 \displaystyle \sf{  = \frac{{(2)}^{ \frac{3}{2} } }{ - 6} }

 \displaystyle \sf{  =  - \frac{2 \sqrt{2}  }{6} }

 \displaystyle \sf{  =  - \frac{ \sqrt{2}  }{3} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the radius of curvature for the curve xy3=a4 at (a,a)

https://brainly.in/question/22270223

2. radius of curvature of the curve x^2/3 + y^2/3 = a^2/3

https://brainly.in/question/13357557

Similar questions