What is the range of the function f(x) = 2^3 sin 4z +1 ?
Answers
Answered by
0
Given : f(x) = 2^{3\sin{4x}+1}2
3sin4x+1
To Find : Range
Solution:
f(x) = 2^{3\sin{4x}+1}f(x)=2
3sin4x+1
3 sin (4x) + 1
-1 ≤ sin (4x) ≤ 1
⇒ - 3 ≤ 3sin (4x) ≤ 3
⇒ - 3 + 1 ≤ 3sin (4x) ≤ 3 + 1
⇒ - 2 ≤ 3sin (4x) ≤ 4
f(x) = 2^{3\sin{4x}+1}f(x)=2
3sin4x+1
2⁻² ≤ f(x) ≤ 2⁴
f(x) = [2⁻² , 2⁴]
= [1/4 , 16]
Range of f(x) = 2^{3\sin{4x}+1}f(x) = 2^{3\sin{4x}+1}f(x)=2
3sin4x+1
Hope it helps. Please mark me BRAINLIEST.
Similar questions