Math, asked by Karisma5982, 1 year ago

What is the ratio of the area of a circle and an equilateral triangle whose diameter and a side?

Answers

Answered by Anonymous
0

Answer:

Area of circle --

\pi {r}^{2}

area of equilateral triangle--

 \frac{ \sqrt{4} }{3}  {a}^{2}

so that ,

Answered by VelvetBlush
5

Let diameter of a circle = Side of an equilateral ∆ = 2a

\therefore \sf\red{ \frac{area \: of \: a \: circle}{area \: of \: equilateral∆}  =  \frac{ {\pi \: a}^{2} }{ \frac{ \sqrt{3} }{4} \times  {(side})^{2}}}

\longrightarrow\sf\red{\frac{ {\pi \: a}^{2} }{ \frac{ \sqrt{3} }{4}  \times ( {2a)}^{2} }  =   \frac{ {\pi \: a}^{2} }{ \frac{ \sqrt{3} }{4} \times  {4a}^{2}  }  =  \frac{\pi}{ \sqrt{3} }  = π:\sqrt{3} }

Similar questions