Physics, asked by bujji8763, 11 months ago

What is the relations between torque and angular momentum in 11th physics book

Answers

Answered by nirman95
9

Answer:

 \boxed{ \sf{ \red{ \bold{ \large{Torque}}}}}

  • It is defined as the Moment of Force.
  • It is an axial vector
  • It is an index representing the amount of force required to rotate something around a given axis.

Mathematically :

 \boxed{ \sf{ \large{ \blue{ \vec \tau =  \vec r  \: \times  \:  \vec F  }}}}

 \boxed{ \large{ \sf{ \bold{ \red{Angular \:  Momentum}}}}}

  • It is the rotational analogue of Linear Momentum.
  • It is given by product of Moment of Inertia and Angular Velocity.

 \boxed{ \blue{ \sf{ \large{L \:  =  I \times \omega}}}}

 \boxed{ \sf{ \orange{ \huge{ \bold{Relationship}}}}}

Torque is the rate of change of Angular Momentum with respect to time.

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{ \huge{ \green{ \bold{ \tau =  \dfrac{dL}{dt}}}}}}

Answered by Anonymous
3

\underline{ \boxed{ \mathfrak{ \huge{ \pink{Answer}}}}} \\  \\   \star \: \underline{ \boxed{ \orange{ \rm{Torque \: ( \vec{ \tau})}}}}

  • Torque acts only in circular motion
  • Torque is axial vector quantity
  • Torque is the cross product of radius and Force
  • Dimentional formula of torque is [M(1)L(2)T(-2)]

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \boxed{ \rm{ \red{  \vec{\tau} = r \times  \vec{F}}}}}

\star \:  \underline{ \boxed{ \orange{ \rm{Angular \: Momentum \: ( \vec{L})}}}}

  • Angular momentum is also axial vector quantity
  • Angular momentum is cross product of moment of inertia and angular velocity
  • Angular momentum also defined as cross product of radius and Linear momentum
  • Dimentional formula of Angular momentum is [M(1)L(2)T(-1)]

 \:  \:  \:  \:  \:  \:  \boxed{ \boxed{ \rm{ \red{ \vec{L} = I \: \times \:  \vec{ \omega} = r \:  \times  \:  \vec{P} }}}}

 \\ \\ \star \:   \underline{\boxed{ \rm{ \blue{Relationship\: :- \:  {bet}^{n} \:    \red{\vec{\tau }}\: and \:  \red{\vec{ L} }}}}} \\  \\ \huge{ \dagger} \:   \:  \boxed{\boxed{ \rm{ \purple{ \huge{ \vec{ \tau} =  \frac{d{ \vec{L}}}{dt} }}}} }\:  \:  \huge{ \dagger}

Similar questions