what is the significance of the terms isolated gaseous atom and ground state while defining the ionization enthalpy and electron gain enthalpy..
Plz fast frnds...
Answers
Answer:
Explanation:
In the definition of ionization enthalpy and electron gain enthalpy, isolated gaseous atom is required for comparison purposes. Ionization energy is the minimum amount of energy required to remove most loosely bound electron from an isolated atom in the gaseous state of an element so as to convert it into gaseous monovalent positive ion. Electron gain enthalpy is the energy change accompanying the process of adding an electron to a gaseous isolated atom to convert it into a negative ion, i.e., a monovalent anion.
Both the above mentioned processes are carried out on an isolated gaseous atom, which in turn is obtained from either the excitation of a ground state atom (in case the element is monoatomic) or atomisation of polyatomic elements.
The force with which an electron is attracted by the nucleus is appreciably affected by presence of other atoms in the neighbourhood. Since in the gaseous state the atoms are widely separated, therefore these interatomic forces are minimum.
The term ground state means that the atom must be present in the most stable state.