what is the smallest number that leaves a remainder of 4 when divided by 3, 4, 5, and 6? a. 56
Answers
Answered by
3
let the required number be ' x '
x = L.C.M ( 3 , 4 ,5 , 6 ) - remainder
x = L.C.M ( 3 , 4 , 5 ,6 ) - 4. _______eq(1)
3 = 3 × 1 , 4 = 2 × 2 , 5 = 5 × 1 , 6 = 3× 2
L.C.M ( 3 , 4 , 5 ,6) = 3 × 2^2 × 5 = 60
now from eq. ( 1) , we get
x = 60 - 4 = 56
therefore,
the required smallest number = 56
_______________________________
Your Answer : 56
_______________________________
x = L.C.M ( 3 , 4 ,5 , 6 ) - remainder
x = L.C.M ( 3 , 4 , 5 ,6 ) - 4. _______eq(1)
3 = 3 × 1 , 4 = 2 × 2 , 5 = 5 × 1 , 6 = 3× 2
L.C.M ( 3 , 4 , 5 ,6) = 3 × 2^2 × 5 = 60
now from eq. ( 1) , we get
x = 60 - 4 = 56
therefore,
the required smallest number = 56
_______________________________
Your Answer : 56
_______________________________
Similar questions