Math, asked by SaqlainSaquib, 1 year ago

what is the solution of Log√(3) 1728
 log_{ \sqrt{3} }(1728)

Answers

Answered by praneethks
4
So we get =>
 log_{ \sqrt{3} }(1728)  =  log_{ \sqrt{3} }( {12}^{3} )  =  >
3 log_{ \sqrt{3} }(12) = 3 log_{ \sqrt{3} }(4)(3) = >
3 log_{ \sqrt{3} }(3)  + 3 log_{ \sqrt{3} }(4)  =  >
3 log_{ \sqrt{3} }( {( \sqrt{3}}^{2} )  = 6 log_{ \sqrt{3} }( \sqrt{3} )  = 6
3 log_{ \sqrt{3} }(4) = 3  \frac{ log(4) }{ log( \sqrt{3} )  } =  \frac{ 3 log( {2}^{2} ) }{ log {3}^{0.5} }
 =  > 6 + 6 \frac{ log2}{0.5 log(3)  } = 6 + 12  \frac{ log(2)}{ log(3) }
 =  > 6 + 12 \frac{(0.3010)}{(0.4770)} =  > 6 + 12(0.631)
 =  > 6 + 7.572  =  > 13.572
13.572 is the answer approximately.

SaqlainSaquib: Thanks @praneethk for the Answer.
SaqlainSaquib: But if the Question is of 1 marks then??
praneethks: just right the answer
praneethks: write nor right .
SaqlainSaquib: Okay! I got it. By the Way THANKS
praneethks: welcome
Similar questions