Math, asked by beehive437, 10 months ago

what is the solution of this question​

Attachments:

Answers

Answered by BrainlyPopularman
6

Question :

▪︎ If  \:  \: { \bold{x =  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}   }  \:  \: and \:  \: y \:  = 1 \:  \: }} , then find the value of  \:  \: { \bold{ \dfrac{x - y}{x - 3y} = ? }} \:  \:

ANSWER :

 \\  \longrightarrow \:  \:  { \red{ \boxed{ \bold{   \dfrac{x - y}{x - 3y} =  \dfrac{  4  +   \sqrt{6}  }{ 5 }  }}}} \:  \:  \\

EXPLANATION :

GIVEN :

 \\  \:  \:{ \huge{.}}  \:  \:  \: { \bold{x =  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}   }  \:  \: and \:  \: y \:  = 1 \:  \: }} \\

TO FIND :

  \\ \:  \: { \huge{. \:  \:  \: }}{ \bold{ \dfrac{x - y}{x - 3y}   = ? }} \:  \:  \\

SOLUTION :

  \\ \:  \implies { \bold{x =  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}   }  \:  \: }} \\

• Now Rationalization –

  \\   \implies { \bold{x =  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2} }   \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  } }} \\

  \\ \:  \implies { \bold{x =  \dfrac{( \sqrt{3} +  \sqrt{2} )^{2}  }{ (\sqrt{3})^{2}  - ( \sqrt{2} )^{2}  } }} \\

• We know that –

  \\ \: { \huge { \star }}\:  \:  \large { \orange{ \boxed{ \bold{ {(a + b)}^{2}   =  {a}^{2}  +  {b}^{2}  + 2ab}}}} \\

  \\ \: { \huge { \star }}\:  \:  \large { \orange{ \boxed{ \bold{ (a + b) (a - b)  = {a}^{2}   -   {b}^{2} }}}} \\

• So that –

  \\ \:  \implies { \bold{x =  \dfrac{( \sqrt{3})^{2} +  (\sqrt{2} )^{2}   + 2( \sqrt{3} )( \sqrt{2} )}{ 3 - 2 } }} \\

  \\ \:  \implies { \bold{x =  3+ 2  + 2( \sqrt{6} )}} \\

  \\ \:  \implies { \bold{x = 5 + 2( \sqrt{6} )}} \\

• Now put the values –

 \\  \:  \implies { \bold{ \dfrac{x - y}{x - 3y}   =  \frac{5 + 2 \sqrt{6}  - 1}{5 + 2 \sqrt{6} - 3 }  }} \:  \:  \\

 \\  \:  { \bold{  \:  \:  \:   \:  \:  \:  \: \:    =  \frac{4 + 2 \sqrt{6} }{2 + 2 \sqrt{6}  }  }} \:  \:  \\

 \\  \:  { \bold{  \:  \:  \:   \:  \:  \:  \: \:    =  \frac{ \cancel2(2+ \sqrt{6} )}{ \cancel2(1 +  \sqrt{6} ) }  }} \:  \:  \\

• Now rationalization –

 \\  \:  { \bold{  \:  \:  \:   \:  \:  \:  \: \:    =  \dfrac{ 2+ \sqrt{6} }{ 1 +  \sqrt{6}  }  \times   \dfrac{1 -  \sqrt{6} }{1 -  \sqrt{6} }  }} \:  \:  \\

 \\  \:  { \bold{  \:  \:  \:   \:  \:  \:  \: \:    =  \frac{( 2+ \sqrt{6}) (1 -   \sqrt{6} ) }{ (1 +  \sqrt{6}) (1 -  \sqrt{6})  }  }} \:  \:  \\

 \\  \:  { \bold{  \:  \:  \:   \:  \:  \:  \: \:    =  \frac{2 - 2  \sqrt{6}  +  \sqrt{6} - 6 }{ 1 - 6 }  }} \:  \:  \\

 \\  \:  { \bold{  \:  \:  \:   \:  \:  \:  \: \:    =  \frac{ - 4 -   \sqrt{6}  }{ - 5 }  }} \:  \:  \\

 \\  \:  { \bold{  \:  \:  \:   \:  \:  \:  \: \:    =  \frac{  4  +   \sqrt{6}  }{ 5 }  }} \:  \:  \\

▪︎Hence ,  \:   \large  { \bold{  \:  \:  \dfrac{x - y}{x - 3y} =  \dfrac{  4  +   \sqrt{6}  }{ 5 }  }} \:  \:  \\

Answered by Anonymous
4

\purple{\mathbb{ANSWER:-}}

Given :–

{ \sf{x = \dfrac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \: and \:  y \: = 1 }}

To Find :–

{ \sf{ \dfrac{x - y}{x - 3y} }}\\

Rationalising x :–

 \sf  x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2}  }  \\ \\  \sf x =   \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2}  } \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}   +   \sqrt{2}  } \\ \\  \sf x =  \frac{( \sqrt{3} +  \sqrt{2}) {}^{2}   }{( { \sqrt{3} }^{2}  -  \sqrt{2} ^{2}  )}   \\ \\  \sf x =  \frac{3 + 2 \sqrt{6} + 2 }{3 - 2}  \\ \\  \sf x =  \frac{5 + 2 \sqrt{6} }{1}  = 5 +  2\sqrt{6}

To Find:–

 \sf \:  \frac{x - y}{x - 3y}  \\

Solution:–

 \sf \: Putting \: values \: of \: x \: and \: y \: in \: \frac{x - y}{x - 3y}:- \\ \\ \sf \:  \frac{5 +  2\sqrt{6} - 1 }{5 +  2\sqrt{6} - 3 \times (1) }  \\ \\ \sf \:  \frac{4 +  2\sqrt{6} }{5 +  2\sqrt{6} - 3 }

\sf \frac{4 +  2\sqrt{6} }{2 +  2\sqrt{6} }  \\ \\ \sf \frac{2(2 + \sqrt{6} }{2(1 + \sqrt{6})}

\sf Rationalising \:  by  ~multiplying \:  \frac{1 -  \sqrt{6} }{1 -  \sqrt{6} } :- \\ \\ \sf \frac{2 + \sqrt{6} }{1 + \sqrt{6}} \times \frac{1 -  \sqrt{6} }{1 -  \sqrt{6} } \\ \\   \frac{2 - 2 \sqrt{6} +  \sqrt{6} - 6  }{1 - 6}  \\ \\  \sf \:  \frac{ - 4 -  \sqrt{6} }{-5} \\ \\ \sf \:  \frac{  4 +  \sqrt{6} }{5}

\red{\sf { Answer= \frac{  4 +  \sqrt{6} }{5}}}

Similar questions