Science, asked by RockingRayquaza, 10 months ago

what is the speed pf light in water?(full explaination)​

Answers

Answered by Aman0990
0

Explanation:

Somewhere in outer space, billions of light years from Earth, the original light associated with the Big Bang of the universe is blazing new ground as it continues moving outward. In stark contrast, another form of electromagnetic radiation originating on the Earth, radio waves from the inaugural live episode of The Lucy Show are broadcasting a premier somewhere in deep space, although greatly reduced in amplitude.

The basic concept behind both events involves the speed of light (and all other forms of electromagnetic radiation), which scientists have thoroughly examined, and is now expressed as a constant value denoted in equations by the symbol c. Not truly a constant, but rather the maximum speed in a vacuum, the speed of light, which is almost 300,000 kilometers per second, can be manipulated by changing media or with quantum interference.

Light traveling in a uniform substance, or medium, propagates in a straight line at a relatively constant speed, unless it is refracted, reflected, diffracted, or perturbed in some other manner. This well-established scientific fact is not a product of the Atomic Age or even the Renaissance, but was originally promoted by the ancient Greek scholar, Euclid, somewhere around 350 BC in his landmark treatise Optica. However, the intensity of light (and other electromagnetic radiation) is inversely proportional to the square of the distance traveled. Thus, after light has traveled twice a given distance, the intensity drops by a factor of four.

When light traveling through the air enters a different medium, such as glass or water, the speed and wavelength of light are reduced (see Figure 2), although the frequency remains unaltered. Light travels at approximately 300,000 kilometers per second in a vacuum, which has a refractive index of 1.0, but it slows down to 225,000 kilometers per second in water (refractive index of 1.3; see Figure 2) and 200,000 kilometers per second in glass (refractive index of 1.5). In diamond, with a rather high refractive index of 2.4, the speed of light is reduced to a relative crawl (125,000 kilometers per second), being about 60 percent less than its maximum speed in a vacuum.

Because of the enormous journeys that light travels in outer space between galaxies (see Figure 1) and within the Milky Way, the expanse between stars is measured not in kilometers, but rather light-years, the distance light would travel in a year. A light-year equals 9.5 trillion kilometers or about 5.9 trillion miles. The distance from Earth to the next nearest star beyond our sun, Proxima Centauri, is approximately 4.24 light-years. By comparison, the Milky Way galaxy is estimated to be about 150,000 light-years in diameter, and the distance to the Andromeda galaxy is approximately 2.21 million light-years. This means that light leaving the Andromeda galaxy 2.21 million years ago is just arriving at Earth, unless it was waylaid by reflecting celestial bodies or refracting debris.

Similar questions