Math, asked by ice10mn, 4 months ago

What is the sum of the first 45 terms of the arithmetic sequence 1, 4, 7, . . . ?

Answers

Answered by Anonymous
11

Step-by-step explanation:

Mark as brilliant and take thanks for all question

Attachments:
Answered by Anonymous
2
  • GIVEN:-

Arithmetic sequence 1, 4, 7, . . .

  • TO FIND:-

Sum of first 45 terms.

  • SOLUTION:-

To find the sum of n terms of AP we use,

\large\boxed{\sf{S_{n}=\dfrac{n}{2}[2a+(n-1)\times\:d]}}

where,

  • a is the first term
  • n is the terms of AP
  • d is the common difference

Therefore for this sequence,

  • d = 4 - 1 = 3
  • a = 1
  • n = 45

Putting the values,

\large\Rightarrow{\sf{S_{n}=\dfrac{n}{2}[2a+(n-1)\times\:d]}}

\large\Rightarrow{\sf{S_{45}=\dfrac{45}{2}[(2\times1)+(45-1)\times3]}}

\large\Rightarrow{\sf{S_{45}=\dfrac{45}{2}[2+44\times3]}}

\large\Rightarrow{\sf{S_{45}=\dfrac{45}{2}[2+132]}}

\large\Rightarrow{\sf{S_{45}=\dfrac{45}{2}\times134}}

\large\Rightarrow{\sf{S_{45}=\dfrac{45}{\cancel{2}}\times\cancel{134}\:\:\:\:67}}

\large\Rightarrow{\sf{S_{45}=45\times67}}

\large\Rightarrow{\sf{S_{45}=3015}}

\large{\pink{\underline{\boxed{\therefore{\sf{\pink{Sum\:of\:first\:45\:terms\:of\:the\:arithmetic\:sequence\:1,4,7,....\:is\:3015.}}}}}}}

Similar questions