Math, asked by cjkm2020, 4 months ago

what is the surface area and volume of a cylinder that is 6cm and 15cm using 3.14 for pie​

Answers

Answered by Anonymous
6

Step-by-step explanation:

 \\  \\

 \blue{ \bf{ \underline{QUESTION} : }}

Find the surface area and volume of a cylinder that is 6cm and 15cm

 \\  \\  \\

_________________________

 \\  \\

 \boxed{ \huge{ \bold{Given}}}

 \\

Note :- Radius is Smaller than Height

 \\

  • Radius (r) = 6 cm

 \\  \\

  • Height (h) = 15 cm

 \\  \\  \\

 \boxed{ \huge{ \bold{ to \: find}}}

   \\  \\

  • Surface Area And Volume (Cylinder)

 \\  \\  \\  \\

 \star{ \pink{ \underline{ \underline{Solution :  - }}}}

 \\  \\

We Know that

 \\

 \boxed{ \boxed{ \red{ \sf{Volume  \: of  \: Cylinder = \pi {r}^{2} h}}}}

 \\  \\

 \:  \:  \:  \:  \:  \:  \:    {\implies{ \sf{Volume  \: of \:  Cylinder = 3.14 \times  {6}^{2}  \times 15}}}

 \\

 \:  \:  \:  \:  \:  \:  \:    {\implies{ \sf{Volume  \: of \:  Cylinder = 3.14 \times  36 \times 15}}}

 \\

 \:  \:  \:  \:  \:  \:  \:    {\implies{ \sf{Volume  \: of \:  Cylinder = {\boxed{ \orange{ 1.695 \:  {cm}^{3}} }}}}}

 \\  \\  \\  \\  \\  \\  \\

We Know that

 \\

 \boxed{ \boxed{ \red{ \sf{Surface  \: Area \:  of  \: Cylinder = 2\pi {r}^{2}  + 2\pi \: r \: h}}}}

 \:  \:  \:  \:  \:  \:  \:    {\implies{ \sf{ Surface \:  Area \:  of  \: Cylinder =  2 \times 3.14 \times  {6}^{2} + 2 \times 3.14 \times 6 \times 15 }}}

 \\

 \:  \:  \:  \:  \:  \:  \:    {\implies{ \sf{ Surface \:  Area \:  of  \: Cylinder =  2 \times 3.14 \times  {36} + 2 \times 3.14 \times 6 \times 15 }}}

 \\

 \:  \:  \:  \:  \:  \:  \:    {\implies{ \sf{ Surface \:  Area \:  of  \: Cylinder =  226.08+ 591.2 }}}

 \\

 \:  \:  \:  \:  \:  \:  \:    {\implies{ \sf{ Surface \:  Area \:  of  \: Cylinder ={ \boxed{ \orange  {791.28 \:  {cm}^{2}}  }}}}}

 \\

============================================

More You Know

  • The volume of a cylinder = πr²h

  • Lateral Surface Area = 2πrh = πdh

  • Total Surface Area = 2πrh + 2πr² = 2πr (h+r)

  • Volume of Hollow Cylinder = πR²h – πr²h = π (R² – r²) h

  • Lateral Surface (hollow cylinder) = 2πRh + 2πrh = 2π(R+r)h

  • Total Surface Area (cylinder) = 2π(R+r)h + 2π (R² – r²) h

  • Volume of Cone = 1/3 π r² h

  • Lateral Surface = πrl

  • where l = slant height = √(r²+ h² )

  • Total Surface Area = πrl + π r²

  • Surface Area of a Sphere = 4 times

_________________________

Similar questions