Math, asked by RehanAhmadXLX2186, 1 year ago

What is the value of (52 x 104)/(25 x 56)? (a) 0 (b) 2 (c) 5 (d) 10?

Answers

Answered by KiritoUzumaki
1
option (e) none of the above
because the answer is 12113.92
Answered by pulakmath007
0

\displaystyle \sf{  \frac{ {5}^{ - 2} \times  {10}^{ - 4}  }{ {2}^{ - 5}  \times  {5}^{ - 6} }  } = 2

Given :

The expression

\displaystyle \sf{  \frac{ {5}^{ - 2} \times  {10}^{ - 4}  }{ {2}^{ - 5}  \times  {5}^{ - 6} }  }

To find :

The value of the expression is

(a) 0

(b) 2

(c) 5

(d) 10

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{  \frac{ {5}^{ - 2} \times  {10}^{ - 4}  }{ {2}^{ - 5}  \times  {5}^{ - 6} }  }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{  \frac{ {5}^{ - 2} \times  {10}^{ - 4}  }{ {2}^{ - 5}  \times  {5}^{ - 6} }  }

\displaystyle \sf{  =  \frac{ {5}^{ - 2} \times  {(5 \times 2)}^{ - 4}  }{ {2}^{ - 5}  \times  {5}^{ - 6} }  }

\displaystyle \sf{  =  \frac{ {5}^{ - 2} \times  {5 }^{ - 4}  \times  {2}^{ - 4}  }{ {2}^{ - 5}  \times  {5}^{ - 6} }  }

\displaystyle \sf{  =  \frac{ {5}^{ - 2} \times  {5 }^{ - 4}    }{   {5}^{ - 6} }   \times \frac{   {2}^{ - 4}  }{ {2}^{ - 5}   }  }

\displaystyle \sf{  =  \frac{ {5}^{ - 2 - 4}  }{   {5}^{ - 6} }   \times   {(2)}^{ - 4 - ( - 5)}  }

\displaystyle \sf{  =  \frac{ {5}^{ - 6}  }{   {5}^{ - 6} }   \times   {(2)}^{ - 4 + 5}  }

\displaystyle \sf{  =   {(5)}^{ - 6 + 6}     \times   {(2)}^{ 1}  }

\displaystyle \sf{  =   {(5)}^{ 0}     \times   {(2)}^{ 1}  }

\displaystyle \sf{  =  1 \times 2 }

\displaystyle \sf{  =  2}

Hence the correct option is (b) 2

Correct question : What is the value of (5⁻² x 10⁻⁴)/(2⁻⁵ x 5⁻⁶) (a) 0 (b) 2 (c) 5 (d) 10

Similar questions