Math, asked by antimattergold37, 2 months ago

What is the value of a^3 - b^3 if a/b + b/a = -1(a,b ≠ 0)?

Answers

Answered by mathdude500
3

Given :-

\rm :\longmapsto\:\dfrac{a}{b}  + \dfrac{b}{a}  =  - 1

To Find :-

\rm :\longmapsto\: {a}^{3} -  {b}^{3}

Identity Used :-

\bf :\longmapsto\: {a}^{3} -  {b}^{3}  = (a - b)( {a}^{2} + ab +  {b}^{2})

Solution :-

Given that

\rm :\longmapsto\:\dfrac{a}{b}  + \dfrac{b}{a}  =  - 1

\rm :\longmapsto\:\dfrac{ {a}^{2} +  {b}^{2}  }{ab} =  - 1

\rm :\longmapsto\: {a}^{2} +  {b}^{2} =  - ab

\bf\implies \: {a}^{2} +  {b}^{2}  + ab = 0 -  - (1)

Consider,

\rm :\longmapsto\: {a}^{3} -  {b}^{3}

\:  \: \rm  =  \:  \: (a - b)( {a}^{2}  +  {b}^{2}  + ab)

\:  \: \rm  =  \:  \: (a - b) \times 0 \:   \:  \:  \:  \: \:  \:  \{using \: (1) \}

\:  \: \rm  =  \:  \: 0

\bf\implies \: {a}^{3}  -  {b}^{3 }  = 0

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions