Math, asked by shobhakumari20057, 6 hours ago

What is the value of (a+b) in the expressions 4 / 3- root 5 = a+b root 5 ?

Attachments:

Answers

Answered by Rahul7895
1

Answer:

 \frac{4}{3 -  \sqrt{5} }  = a + b \sqrt{5}

First rationalize the value in L.H.S

that is

 \frac{4}{3 -  \sqrt{5} }  \times  \frac{3 +  \sqrt{5} }{3 +  \sqrt{5} }  \\  \frac{4(3 +  \sqrt{5} )}{ {3}^{2}  -  \sqrt{5} ^{2}  }  \\  =  \frac{12 + 4 \sqrt{5} }{9 - 5}  =  \frac{12 + 4 \sqrt{5} }{4}

therefore

a + b \sqrt{5}  =   \frac{12 + 4 \sqrt{5} }{4}  \\  =  \frac{12}{4} +  \frac{4 \sqrt{5} }{4}

Comparing L.H.S & R.H.S

we get

a =  \frac{12}{4}  = 3\\ b \sqrt{5} =  \frac{4 \sqrt{5} }{4}  =  \frac{2(2 \sqrt{5} )}{4}  =  \frac{2 \sqrt{5} }{2}  \\ b \sqrt{5} =   \frac{2 \sqrt{5} }{2}

If B√5= (2√5)/2

Then B= 1

Then B= 1and A=3

hope it helps

Hit The Brainliest if you find it helpful

Similar questions