What is the value of a³+b³+c³ −3abc ,if a + b + c = 12 and ab + bc + ca = 47
Answers
Answered by
6
Given:
- a + b + c = 12
- ab + bc + ca = 47
To find:
⟶ a³ + b³ + c³ - 3abc
Formulas used:
★ a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
★ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Method:
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
Here we also need to find the value of a² + b² + c²
We know that;
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Substituting the given values,
(12)² = a² + b² + c² + 2(47)
→ 144 = a² + b² + c² + 94
→ a² + b² + c² = 144 - 94
→ a² + b² + c² = 50
Now, we have got the value of a² + b² + c²
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
⇒ a³ + b³ + c³ - 3abc = 12(50 - (ab + bc + ca))
⇒ a³ + b³ + c³ - 3abc = 12(50 - 47)
⇒ a³ + b³ + c³ - 3abc = 12(3)
∴ a³ + b³ + c³ - 3abc = 36
Similar questions