Math, asked by MANISHAKUMARI03, 4 months ago

what is the value of beta(1/2, 1/2) ​

Answers

Answered by shubhamk200023
19

Answer:

\pi

this is the answer of beta (1/2,1/2)

Answered by pulakmath007
1

\displaystyle \sf{   \beta  \bigg(  \frac{1}{2} , \frac{1}{2} \bigg) = \pi}

Given :

\displaystyle \sf{   \beta  \bigg(  \frac{1}{2} , \frac{1}{2} \bigg)}

To find :

The value

Solution :

Step 1 of 2 :

Define Beta function

We know that for m , n > 0

\displaystyle  \sf  \beta (m,n) =2 \int\limits_{0}^{ \frac{\pi}{2} }  {sin}^{2m - 1} x \: {cos}^{2n - 1} x \:   \, dx

Step 2 of 2 :

Find the value

\displaystyle \sf{ We  \: put  \: m =  \frac{1}{2}  \:  \: and \:  \: n =  \frac{1}{2}  }

Thus we get

\displaystyle \sf{   \beta  \bigg(  \frac{1}{2} , \frac{1}{2} \bigg)}

\displaystyle  \sf   = 2\int\limits_{0}^{ \frac{\pi}{2} }  \:   \, dx

\displaystyle  \sf   = 2 \: x \bigg| _{0}^{ \frac{\pi}{2} }

\displaystyle  \sf   = 2  \bigg[  \frac{\pi}{2}  - 0\bigg]

\displaystyle  \sf   = 2  \times  \frac{\pi}{2}

\displaystyle  \sf   =\pi

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the nth derivative of sin 6x cos 4x.

https://brainly.in/question/29905039

2. let 5f(x)+ 3f(1/x)=x+2 and y= xf(x) . then x=1 point dy/dx=?

https://brainly.in/question/19870192

3. Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

The derivative of √[[f(x)]^2+ [g (x)]^2] W. r. to. x. is

https://brainly.in/question/18312318

Similar questions