Math, asked by anaskazi6789, 1 year ago

What is the value of (cos 18° - sin 18°)/sin 27°​

Answers

Answered by sushiladevi4418
1

Answer:

The value of \dfrac{cos18^o-sin18^o}{sin27^o} is 1.417      

Step-by-step explanation:

We have to find the value of \dfrac{cos18^o-sin18^o}{sin27^o} -----(i)

where,

  • cos18^o = 0.951
  • sin18^o = 0.309
  • sin27^o = 0.453

Now,

put the above values in equation (i)

\dfrac{cos18^o-sin18^o}{sin27^o}

= \dfrac{0.951-0.309}{0.453}

= \dfrac{0.642}{0.453}

= 1.417                                                                

Answered by SK3110
0

Answer:

Step-by-step explanation:

Ans:

The value of (cos18-sin18)/sin27= \sqrt{2} =1.414

First let's find the value of cos18-sin18 ⇒

cos8-sin18 = sin72-sin18

= 2cos((72+18)/2)sin((72-18)/2)    

∵ sinA - sinB = 2sin((A-B)/2)cos((A+B)/2)

= 2cos(90/2)sin(54/2)

⇒cos18-sin18=2cos45sin27

Bringing 'sin27' to the LHS ⇒

(cos18-sin18)/sin27=2 × \frac{1}{\sqrt{2} } = \sqrt{2} ≅ 1.414

Similar questions