What is the value of cos 50 sin 40 + sin 50 cos 40
Answers
Answered by
25
sin(90-50) sin 40 + cos (90-50) cos 40
sin40 sin40 + cos40 cos40
sin^2 40 + cos^2 40
(since sin @ + cos@ =1)
so sin^2 40 + cos^2 40 = 1
Hope it helped you
If yes then come on mark it as BRAINLIEST
sin40 sin40 + cos40 cos40
sin^2 40 + cos^2 40
(since sin @ + cos@ =1)
so sin^2 40 + cos^2 40 = 1
Hope it helped you
If yes then come on mark it as BRAINLIEST
Answered by
11
Given:
(i) cos 50° sin 40° + sin 50° cos 40°
To find:
(i) The solution of the given expression.
Solution:
We know that
cos x° = sin (90°-x°)
So, cos 50° = sin (90°-50°) = sin 40°
Thus,
cos 50° sin 40° = sin 40° sin 40° = sin² 40 °
Again,
sin x° = cos (90°-x°)
So, sin 50° = cos (90°-50°) = cos 40°
Thus,
sin 50° cos 40° = cos 40° cos 40° = cos² 40 °
Therefore,
cos 50° sin 40° + sin 50° cos 40°
= sin² 40 ° + cos² 40 °
We know, sin² θ + cos² θ = 1.
So, sin² 40 ° + cos² 40 ° = 1.
Therefore,
cos 50° sin 40° + sin 50° cos 40° = 1
Similar questions