Math, asked by susantabhoiaims, 11 months ago

What is the value of cosec² 30° + sin² 45° + sec² 60° +tan² 30°?

Answers

Answered by spiderman2019
7

Answer:

53/6

Step-by-step explanation:

cosec² 30° + sin² 45° + sec² 60° +tan² 30°

//Cosec30 = 1/Sin30 = 2, sin45 = 1/√2, Sec60 = 1/cos60 = 2, tan30 =1/√3

= (2)² + (1/√2)² + (2)² + (1/√3)²

= 4+ 1/2+4+1/3

= 8 + 5/6 = 53/6

Answered by pinquancaro
3

\csc^2(30)+\sin^2(45)+\sec^2(60)+\tan^2(30)=8.83

Step-by-step explanation:

Given : Expression \csc^2(30)+\sin^2(45)+\sec^2(60)+\tan^2(30)

To find : What is the value of expression ?

Solution :

Expression \csc^2(30)+\sin^2(45)+\sec^2(60)+\tan^2(30)

Using trigonometric values,

\csc(30)=2, \sin (45)=\frac{1}{\sqrt{2}} , \sec(60)=2, \tan(30)=\frac{1}{\sqrt3}

Substitute the values,

=(2)^2+(\frac{1}{\sqrt2})^2+(2)^2+(\frac{1}{\sqrt3})^2

=4+\frac{1}{2}+4+\frac{1}{3}

=\frac{1}{2}+\frac{1}{3}+8

=\frac{3+2+48}{6}

=\frac{53}{6}

=8.83

Therefore, \csc^2(30)+\sin^2(45)+\sec^2(60)+\tan^2(30)=8.83

#Learn more

Sin²45°. cosec² 30– sec² 60°

https://brainly.in/question/5338976

Similar questions