what is the value of cot 180/8 and tan 180/8?
Answers
Answered by
6
Hi ,
We know that
_______________________
Cot 2θ = ( cot^2 θ - 1 ) / 2cot θ
________________________
i ) Let θ = 180 / 8 = 22.5
Cot θ = a
Then ,
Cot 2θ = ( cot^2θ - 1 )/ 2 cotθ
Cot ( 2 × 22.5 ) = ( a^2 - 1 )/2a
Cot 45 = ( a^2 - 1 )/ 2a
1 = ( a^2 - 1)/2a
2a = a^2 - 1
a^2 -2a = 1
add 1 bothsides
a^2 -2a +1 = 2
( a - 1 )^2 = 2
a - 1 = sqrt 2
we are taking positive
value because cot 22.5 lies in 1st
Quadrant.
Therefore ,
a = sqrt 2 + 1
Cot θ = sqrt2 + 1
Cot 180 / 8 = sqrt 2 + 1 ------( 1 )
ii ) tan 180 / 8
= 1 / ( cot 180 / 8 )
= 1 / ( sqrt 2 + 1 ) from ( 1 )
= ( sqrt 2 - 1 )/ ( sqrt 2 +1)(sqrt2-1)
= ( sqrt 2 - 1 )/ [ ( sqrt2 )^2 - 1 ^2 ]
= ( sqrt 2 - 1 )/ ( 2 - 1 )
= sqrt 2 - 1
Therefore ,
Tan 180/8 = sqrt2 - 1
I hope this helps you.
***
We know that
_______________________
Cot 2θ = ( cot^2 θ - 1 ) / 2cot θ
________________________
i ) Let θ = 180 / 8 = 22.5
Cot θ = a
Then ,
Cot 2θ = ( cot^2θ - 1 )/ 2 cotθ
Cot ( 2 × 22.5 ) = ( a^2 - 1 )/2a
Cot 45 = ( a^2 - 1 )/ 2a
1 = ( a^2 - 1)/2a
2a = a^2 - 1
a^2 -2a = 1
add 1 bothsides
a^2 -2a +1 = 2
( a - 1 )^2 = 2
a - 1 = sqrt 2
we are taking positive
value because cot 22.5 lies in 1st
Quadrant.
Therefore ,
a = sqrt 2 + 1
Cot θ = sqrt2 + 1
Cot 180 / 8 = sqrt 2 + 1 ------( 1 )
ii ) tan 180 / 8
= 1 / ( cot 180 / 8 )
= 1 / ( sqrt 2 + 1 ) from ( 1 )
= ( sqrt 2 - 1 )/ ( sqrt 2 +1)(sqrt2-1)
= ( sqrt 2 - 1 )/ [ ( sqrt2 )^2 - 1 ^2 ]
= ( sqrt 2 - 1 )/ ( 2 - 1 )
= sqrt 2 - 1
Therefore ,
Tan 180/8 = sqrt2 - 1
I hope this helps you.
***
Similar questions