what is the value of d/dx cotx =
Answers
Answered by
16
⇒/dx (cot x)
⇒d/dx [(cosx)/(sinx)]
⇒[(cosx)'(sinx)-(cosx)(sinx)']/(sinx)²
⇒[(-sinx)(sinx)-(cosx)(cosx)]/(sinx)²
⇒[(-sin^2(x))-(cos^2(x))]/(sinx)²
⇒-[sin^2(x))+(cos^2(x))]/(sinx)²
⇒-[1]/(sinx)²
∴ the answer is -csc^2 (x)
⇒d/dx [(cosx)/(sinx)]
⇒[(cosx)'(sinx)-(cosx)(sinx)']/(sinx)²
⇒[(-sinx)(sinx)-(cosx)(cosx)]/(sinx)²
⇒[(-sin^2(x))-(cos^2(x))]/(sinx)²
⇒-[sin^2(x))+(cos^2(x))]/(sinx)²
⇒-[1]/(sinx)²
∴ the answer is -csc^2 (x)
Answered by
6
It would be equal to 0 since the derivation with the limits corresponds to it's beta value.
Similar questions