Math, asked by rubyswain110, 3 months ago

what is the value of gamma 5/2 ?​

Answers

Answered by srishanth30
7

8.√π/15

Step-by-step explanation:

Using Gamma(x+1) = x Gamma(x), we get

(√π)=Gamma(1/2) = Gamma{(-1/2)+1) =

(-1/2)Gamma(-1/2) = (-1/2)Gamma{(-3/2)+1} =

(-1/2)(-3/2)Gamma(-3/2)

=(-1/2)(-3/2)Gamma{(-5/2)+1}

= (-1/2)(-3/2)(-5/2)Gamma(-5/2)

= (-15/8)Gamma(-5/2).

Therefore Gamma(-5/2) = -8.√π/15.

PLEASE MARK ME AS A BRAINLIEST AND FOLLOW ME PLEASE

Answered by ritikkumar269
8

Answer:

The value of gamma 5/2 is \frac{3}{4} \sqrt{\pi}.

Step-by-step explanation:

We are asked to find the value of gamma 5/2.

To identify Gamma function.

\Gamma(s)=(s-1) !

Where,

s: Positive Integer

To identify Gamma function for other integers:

r(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t,

This can be further simplified as follows:

\Gamma(s)=(s-1) \Gamma(s-1)

Where,

s: positive real number and s should always be greater than 0.

Apply the simplified version of the second formula:

\Gamma(5 / 2)=(s-1) \Gamma(s-1)

\begin{aligned}&\Gamma(5 / 2)=((5 / 2)-1) \Gamma((5 / 2)-1) \\&\Gamma(5 / 2)=(3 / 2) \Gamma(3 / 2)\end{aligned}

Now we will calculate \Gamma(3 / 2):

Using $\Gamma(n+1)=n \Gamma(n)$

We can rearrange for $\Gamma(n)$

To get $\Gamma(n)=\frac{1}{n} \Gamma(n+1)$

Then using $n=\frac{3}{2}$, after substituting, we have:

\Gamma(3 / 2)=\Gamma(1 / 2+1)=\frac{1}{2} \Gamma(1 / 2)=\frac{1}{2} \sqrt{\pi}

\Gamma(5 / 2)=(3 / 2) \Gamma(3 / 2) and \Gamma(3 / 2)=\frac{1}{2} \sqrt{\pi}

\Gamma(5 / 2)=\frac{3}{2}\times \frac{1}{2} \sqrt{\pi}\\\Gamma(5 / 2)=\frac{3}{4} \sqrt{\pi}

Therefore, the required value of gamma is \frac{3}{4} \sqrt{\pi}.

Similar questions