Math, asked by azamsayyad12345, 2 months ago

what is the value of sinsquare tita +cossquare tita options a)0 b)1c)2d)3​

Answers

Answered by rajgandhi060
0

Answer:

b)1

Step-by-step explanation:

The given equation Sin^2 \theta + Cos^2 \thetaSin2θ+Cos2θ = 1 is proved.

Step-by-step explanation:

Given:

Prove that sin square theta + cos square theta is equal to 1

Solution:

Put sin \theta = \frac{P}{H}sinθ=HP , cos \theta = \frac{B}{H}cosθ=HB ,

Sin^2 \theta + Cos^2 \thetaSin2θ+Cos2θ = 1

(\frac{P}{H})^2 + (\frac{B}{H})^2(HP)2+(HB)2 = 1

\frac{(P^2 + B^2)}{H^2}H2(P2+B2) = 1

Ina triangle, by pythogoras,

P^2 + B^2 = H^2P2+B2=H2

Hence, \frac{H^2}{H^2}H2H2 = 1.

Hence proved

To know more:

Prove sin 8 theta minus Cos 8 theta equal to sin square theta minus cos square theta 1 - 2 sin square theta cos square theta

Answered by SaptakGhosh
0

Answer:

sin^2 theta+cos^2theta = 1

PLEASE MARK ME BRAINLIEST

Step-by-step explanation:

Similar questions