Math, asked by acharyabindu286, 3 months ago

What is the value of tan’A - sec’A, if Oºs A< 90° ?

Answers

Answered by sharanyalanka7
27

Answer:

- 1

Step-by-step explanation:

Correct Question :-

What is the value of tan^2A-sec^2A , If 0\degree&lt;A&lt;90\degree ?

To Find :-

Value of tan^2A-sec^2A Where 0\degree&lt;A&lt;90\degree

Solution :-

We know that :-

sin^2A+cos^2A=1

Dividing the whole equation with "cos^2A" :-

\dfrac{sin^2A+cos^2A}{cos^2A}=\dfrac{1}{cos^2A}

\dfrac{sin^2A}{cos^2A}+\dfrac{cos^2A}{cos^2A},= \dfrac{1}{cos^2A}

\bigg(\dfrac{sinA}{cosA}\bigg)^2+1=\bigg(\dfrac{1}{cosA}\bigg)^2

We know that :-

1) sinA/cosA = tanA

2) 1/cosA = secA

(tanA)^2+1=(secA)^2

tan^2A + 1 = sec^2A

tan^2A-sec^2A = -1

Since, tan^2A - sec^2A = -1

Trigonometric Identities :-

1)sin^2A+cos^2A = 1

2)sec^2A-tan^2A=1

3)csc^2A-cot^2A=1

Similar questions