Math, asked by dalavipragati2003, 6 months ago

what is the value of tan q if sin q 4/5​

Answers

Answered by EnchantedBoy
9

Answer:-

Given:-

  • sin q = 4/5

to find:-

  • The value of tan q

Solution:-

Here,

sin ∅ = opposite/hypotenuse

given,

sin q 4/5

In ΔPQR,

PQ = 5

PR = 4

QR = x

PQ = hypotenuse

PR = opposite

QR = adjacent

Then,

(opposite)² + (adjacent)² = (hypotenuse)²

⇒(4)² + (x)² = (5)²

⇒16 + x² = 25

⇒x² = 25 - 16

⇒x² = 9

⇒x = √9

⇒x = 3

So, adjacent = 3

Then,

tan ∅ = opposite/adjacent

opposite = 4

adjacent = 3

tan q = 4/3

Therefore, the value of "tan q = 4/3"

Answered by EnchantedGirl
17

 \bigstar \sf \large \underline{ \underline{Given :-}} \\  \\

  • Sin q = 4/5 .

\\

 \bigstar \sf  \large\underline{ \underline{To \:  find :- }} \\  \\

  • Value of tan q.

\\

 \bigstar \sf \large \underline{ \underline{Solution :- }} \\  \\

We know :

 \mapsto \sf sin (\theta) = opposite \div hypotenuse \\  \\  \mapsto \sf \tan( \theta)  = adjecent \div opposite \\  \\  \\

Given, Sin q = 4/5 .

So,

Opposite side = 4

Hypotenuse = 5.

\\

We know need to find the adjacent side.

\\

By pythagoras theorem ,

---------------------------------------------

❥︎(Opp)^2+(Adj)^2=Hypotenuse

----------------------------------------------

\\

Acc to question :

\\

Let 'a' be the adjacent side.

\\

 \sf \implies   {4}^{2} +  {a}^{2}  =  {5}^{2}  \\  \\  \implies \sf \: 16 +  {a}^{2}  = 25 \\  \\   \implies \sf \:  {a}^{2}  = 9 \\  \\  \sf \implies \bf \underline{a= 3.} \\  \\  \\

Therefore, Adjacent side = 3.

\\

Now, The value of Tan q is ,

\\

» Tan q = Opposite / Adjacent = 4/3

 \mapsto \orange{ \boxed{ \sf \: tan \: q =  \frac{4}{3} }} \\  \\

Hence, the value of tan q is 4/3 .

\\

___________________________

HOPE IT HELPS !

Similar questions