What is the value of tan18 degree
Answers
Answered by
45
Hello....
▶Let θ = 18°.
so...
▶5θ = 90°
∴ 2θ + 3θ = 90°
⇒ 2θ = 90° – 30°
⇒ sin 2θ = sin (90° – 3θ) = cos 3θ
⇒ 2 sin θ cos θ = 4 cos3θ – 3 cos θ
⇒ 2 sin θ cos θ – 4 cos3θ + 3 cos θ = 0
⇒ cos θ (2 sin θ – 4 cos2 θ + 3) = 0
⇒ 2 sin θ – 4 (1 – sin2θ) + 3 = 0
<(cos θ = cos 18° ≠ 0)>
⇒ 4sin2 θ + 2 sin θ – 1 = 0
⇒ sinθ= ±(whole root)√2^2-4X4X-1
simplifying...
⇒ sin 18=√5-1/4
⇒ cos 18° = 1 − sin^2X18°
⇒ <whole root>√=1 − (5√−1)216
⇒ <whole root>√=16 − (5 + 1 − 25√)16
⇒ <whole root>√=16−(6−25√)16
⇒ <whole root>√=16 − 6 + 25√16
⇒ <whole root>√=10+25√16
⇒ <whole root>√=10+25√√4...
⇒ Now, tan 18° = sin 18°/cos 18°
= √5 − 1/4 X4<whole root>√10+25
=▶▶√5 − 1/<whole root>10+25◀◀..
simplifying ⇒0.329......
thank you....
▶Let θ = 18°.
so...
▶5θ = 90°
∴ 2θ + 3θ = 90°
⇒ 2θ = 90° – 30°
⇒ sin 2θ = sin (90° – 3θ) = cos 3θ
⇒ 2 sin θ cos θ = 4 cos3θ – 3 cos θ
⇒ 2 sin θ cos θ – 4 cos3θ + 3 cos θ = 0
⇒ cos θ (2 sin θ – 4 cos2 θ + 3) = 0
⇒ 2 sin θ – 4 (1 – sin2θ) + 3 = 0
<(cos θ = cos 18° ≠ 0)>
⇒ 4sin2 θ + 2 sin θ – 1 = 0
⇒ sinθ= ±(whole root)√2^2-4X4X-1
simplifying...
⇒ sin 18=√5-1/4
⇒ cos 18° = 1 − sin^2X18°
⇒ <whole root>√=1 − (5√−1)216
⇒ <whole root>√=16 − (5 + 1 − 25√)16
⇒ <whole root>√=16−(6−25√)16
⇒ <whole root>√=16 − 6 + 25√16
⇒ <whole root>√=10+25√16
⇒ <whole root>√=10+25√√4...
⇒ Now, tan 18° = sin 18°/cos 18°
= √5 − 1/4 X4<whole root>√10+25
=▶▶√5 − 1/<whole root>10+25◀◀..
simplifying ⇒0.329......
thank you....
pradeepseth942:
And again thanks for solve my problem
Answered by
1
Answer:
Notice, we know sin18∘=5√−14 & cos18∘=10+25√√4
∴tan18∘
=sin18∘cos18∘
=5√−1410+25√√4
=5√−110+25√√
=(5√−1)10−25√√10+25√√10−25√√
=(10−25√)(5√−1)2√102−(25√)2√
=(10−25√)(6−25√)√80√
=80−325√√80√
=80−325√√80√
=
Similar questions