Math, asked by venusdemor919, 11 months ago

What is the value of tan²θ-sec²θ/cot²θ-cosec²θ?

Answers

Answered by Anonymous
9

Answer:

1

Step-by-step explanation:

Given : {\sf{\ \ {\dfrac{tan^2 \theta - sec^2 \theta}{cot^2 \theta - cosec^2 \theta}}}}

____________________________

{\boxed{\sf{\gray{1 + tan^2 \theta = sec^2 \theta}}}}

{\sf{\gray{From \ this, \ we \ get \ [ tan^2 \theta - sec^2 \theta = - 1]}}}

____________________________

{\boxed{\sf{\gray{1 + cot^2 \theta = cosec^2 \theta}}}}

{\sf{\gray{From \ this, \ we \ get \ [ cot^2 \theta - cosec^2 \theta = - 1]}}}

____________________________

Putting known values, we get

____________________________

\Rightarrow{\sf{ {\dfrac{- 1}{- 1}} }}

____________________________

\Rightarrow{\boxed{\sf{\red{1}}}}

____________________________

Other identities which are frequently used :

• sin²θ + cos²θ = 1

• sin θ = P/H = 1/cosec θ

• cos θ = B/H = 1/sec θ

• tan θ = P/B = 1/cot θ

Answered by Anonymous
1

\huge\bold\green{Question}

What is the value of

tan²θ-sec²θ / cot²θ-cosec²θ ?

\huge\bold\green{AnsWer}

Given : →

\implies{\tt{\ \ {\dfrac{tan^2 \theta - sec^2 \theta}{cot^2 \theta - cosec^2 \theta}}}}

\implies\tt{1 + tan^2 \theta = sec^2 \theta}

From the above-mentioned value , we get →

\implies\tt{ [ tan^2 \theta - sec^2 \theta = - 1]}

\implies\tt{1 + cot^2 \theta = cosec^2 \theta}

From the above-mentioned value , we get →

\implies\tt{ [ cot^2 \theta - cosec^2 \theta = - 1]}

By substituting the values we get →

{\tt{ {\dfrac{- 1}{- 1}} }}

\huge\bold\blue{1}

Similar questions