What is the value of tanx+cotx if :
1)cosx=7/25
2)sinx=3/5
3)cosx=1/5
Give full detailed answer with steps .
Answers
1. cosx=b/h
b=7
h=25
p^2=h^2-b^2
p^2=25^2-7^2
p^2=625-49
p^2=576
p=24
so,tanx+cotx. p/b +b/p
24/7+7/24
583/168
2.sinx=p/h
p=3
h=5
b^2=h^2-p^2
b^2=5^2-3^2
b^2=25-9
b^2=16
b=4
so,tanx+cotx. p/b+b/p
3/5 +5/3
34/15
3.cosx=b/h
b=1
h=5
p^2=h^2-b^2
p^2=5^2-1^2
p^2=25-1
p^2=24
p=√24
now,tanx+cotx. p/b +b/p
√24/1 +1/√24
24+1/√24
Answer:
We are required to find tan x + cot x .
1) cos x = 7/25
We know that sin²x + cos²x = 1
⇒ sin²x + ( 7/25 )² = 1
⇒ sin²x + 49/625 = 1
⇒ sin²x = 1 - 49/625
⇒ sin²x = ( 625 - 49 ) / 625
⇒ sin²x = 576/625
⇒ sin x = √( 576/625 )
⇒ sin x = 24/25
We know that cot x = cos x / sin x
⇒ cot x = ( 7/25 ) / ( 24/25 )
⇒ cot x = 7/24
We know that tan x = 1/cot x
⇒ tan x = 24/7
tan x + cot x = 24/7 + 7/24
⇒ tan x + cot x = ( 24² + 7² ) / ( 24×7 )
⇒ tan x + cot x = ( 576 + 49 ) / 168
⇒ tan x + cot x = 625/168
2) sin x = 3/5
We know that sin²x + cos²x = 1
⇒ cos²x + ( 3/5 )² = 1
⇒ cos²x + 9/25 = 1
⇒ cos²x = 1 - 9/25
⇒ cos²x = ( 25 - 9 ) / 25
⇒ cos²x = 16/25
⇒ cos x = 4/5
We know that cot x = cos x / sin x
⇒ cot x = ( 4/5 ) / ( 3/5 )
⇒ cot x = 4/3
We know that tan x = 1/cot x
⇒ tan x = 3/4
tan x + cot x = 3/4 + 4/3
⇒ tan x + cot x = ( 3² + 4² ) / ( 4×3 )
⇒ tan x + cot x = ( 9 + 16 ) / 12
⇒ tan x + cot x = 25/12
3)
cos x = 1/5
We know that sin²x + cos²x = 1
⇒ sin²x + ( 1/5 )² = 1
⇒ sin²x + 1/25 = 1
⇒ sin²x = 1 - 1/25
⇒ sin²x = ( 25 - 1 ) / 625
⇒ sin²x =24/25
⇒ sin x = √( 24/25 )
⇒ sin x = √24/5
We know that cot x = cos x / sin x
⇒ cot x = ( 1/5 ) / ( √24/5 )
⇒ cot x = 1/√24
We know that tan x = 1/cot x
⇒ tan x = √24
tan x + cot x = √24 + 1/√24
⇒ tan x + cot x = ( 24 + 1 )/√24
⇒ tan x + cot x = 25/√24