Math, asked by tonny8733, 8 months ago

What is the volume of aright circular cone of atitude 12cm & slant height 13cm given below

Answers

Answered by BrainlyIAS
4

\bigstar Question :

  • What is the volume of a right circular cone of altitude 12 cm & slant height 13 cm .

\bigstar Answer :

Given , In a right circular cone ,

Height , h = 12 cm , Slant Height , l = 13 cm

Now apply Pythagoras theorem for finding radius of cone.

⇒ r² + h² = l²

⇒ r² = 13² - 12²

⇒ r = √(169 - 144) = √25

⇒ r = 5 cm

Volume of the cone , \bold{\bf{\red{V=\frac{1}{3}\pi r^2h}}}

\implies \bold{V=\frac{1}{3} \pi *5^2*12}\\\\\implies \bold{V=100\pi}\\\\\implies \bold{V=314\;cm^3}

\bold{\bf{\blue{Hence\;the\;volume\;of\;a\;right\;circular\;cone\;is\;314\;cm^3}}}

Attachments:
Answered by Anonymous
13

 \large\bf\underline{Given:-}

  • Altitude of cone = 12cm
  • Slent height = 13cm

 \large\bf\underline {To \: find:-}

  • Volume of cone.

 \huge\bf\underline{Solution:-}

We know that,

 \large\bf \blacktriangleright \: l =  \sqrt{ {r}^{2}  +  {h}^{2} }

\dashrightarrow \rm 13 =  \sqrt{ {r}^{2} + 12 {}^{2}  }  \\  \\ \dashrightarrow \rm \:13 =  \sqrt{ {r}^{2} + 144 }  \\  \\ \dashrightarrow \rm \: {13}^{2}  =  {r}^{2}  + 144 \\  \\ \dashrightarrow \rm \:169 - 144 =  {r}^{2}  \\  \\ \dashrightarrow \rm \:25 =  {r}^{2}  \\  \\ \dashrightarrow \rm \:r =  \sqrt{25}  \\  \\ \dashrightarrow \bf \: r = 5cm

\large\blacktriangleright \bf \: volumeof \: cone \:  =  \frac{1}{3}  \pi \: r {}^{2} h  \\   \\  \longrightarrow \rm \: volume \: of \: cone \:  =  \frac{1}{3}  \times  \frac{22}{7}  \times  {5}^{2}  \times 12 \\  \\ \longrightarrow \rm \: volume \: of \: cone \:  =  \frac{22}{7}  \times 25 \times 4 \\  \\ \longrightarrow \rm \: volume \: of \: cone \:  = 314.28cm^3 \:

Attachments:
Similar questions