Math, asked by Vikkyvikas8649, 9 months ago

what is the word description of the sequence: 21,23,25,27,29?

Answers

Answered by engyjain
1

Answer:

21,23,25,27,29,31,33,35

Your input 21,23,25,27,29,31,33,35 appears to be an arithmetic sequence

Find the difference between the members

a2-a1=23-21=2

a3-a2=25-23=2

a4-a3=27-25=2

a5-a4=29-27=2

a6-a5=31-29=2

a7-a6=33-31=2

a8-a7=35-33=2

The difference between every two adjacent members of the series is constant and equal to 2

General Form: an=a1+(n-1)d

an=21+(n-1)2

a1=21   (this is the 1st member)

an=35  (this is the last/nth member)

d=2  (this is the difference between consecutive members)

n=8  (this is the number of members)

Sum of finite series members

The sum of the members of a finite arithmetic progression is called an arithmetic series.

Using our example, consider the sum:

21+23+25+27+29+31+33+35

This sum can be found quickly by taking the number n of terms being added (here 8), multiplying by the sum of the first and last number in the progression (here 21 + 35 = 56), and dividing by 2:

n(a1+an)2

8(21+35)

     2

The sum of the 8 members of this series is 224

This series corresponds to the following straight line y=2x+21

Finding the nthelement

a1 =a1+(n-1)*d =21+(1-1)*2 =21

a2 =a1+(n-1)*d =21+(2-1)*2 =23

a3 =a1+(n-1)*d =21+(3-1)*2 =25

a4 =a1+(n-1)*d =21+(4-1)*2 =27

a5 =a1+(n-1)*d =21+(5-1)*2 =29

a6 =a1+(n-1)*d =21+(6-1)*2 =31

a7 =a1+(n-1)*d =21+(7-1)*2 =33

a8 =a1+(n-1)*d =21+(8-1)*2 =35

a9 =a1+(n-1)*d =21+(9-1)*2 =37

a10 =a1+(n-1)*d =21+(10-1)*2 =39

a11 =a1+(n-1)*d =21+(11-1)*2 =41

a12 =a1+(n-1)*d =21+(12-1)*2 =43

a13 =a1+(n-1)*d =21+(13-1)*2 =45

a14 =a1+(n-1)*d =21+(14-1)*2 =47

a15 =a1+(n-1)*d =21+(15-1)*2 =49

a16 =a1+(n-1)*d =21+(16-1)*2 =51

a17 =a1+(n-1)*d =21+(17-1)*2 =53

a18 =a1+(n-1)*d =21+(18-1)*2 =55

a19 =a1+(n-1)*d =21+(19-1)*2 =57

a20 =a1+(n-1)*d =21+(20-1)*2 =59

a21 =a1+(n-1)*d =21+(21-1)*2 =61

a22 =a1+(n-1)*d =21+(22-1)*2 =63

a23 =a1+(n-1)*d =21+(23-1)*2 =65

a24 =a1+(n-1)*d =21+(24-1)*2 =67

a25 =a1+(n-1)*d =21+(25-1)*2 =69

a26 =a1+(n-1)*d =21+(26-1)*2 =71

a27 =a1+(n-1)*d =21+(27-1)*2 =73

a28 =a1+(n-1)*d =21+(28-1)*2 =75

a29 =a1+(n-1)*d =21+(29-1)*2 =77

a30 =a1+(n-1)*d =21+(30-1)*2 =79

a31 =a1+(n-1)*d =21+(31-1)*2 =81

a32 =a1+(n-1)*d =21+(32-1)*2 =83

a33 =a1+(n-1)*d =21+(33-1)*2 =85

Answered by mastermaaz707
1

Answer:

21,23,25,27,29,31,33,35

Your input 21,23,25,27,29,31,33,35 appears to be an arithmetic sequence

Find the difference between the members

a2-a1=23-21=2

a3-a2=25-23=2

a4-a3=27-25=2

a5-a4=29-27=2

a6-a5=31-29=2

a7-a6=33-31=2

a8-a7=35-33=2

The difference between every two adjacent members of the series is constant and equal to 2

General Form: an=a1+(n-1)d

an=21+(n-1)2

a1=21   (this is the 1st member)

an=35  (this is the last/nth member)

d=2  (this is the difference between consecutive members)

n=8  (this is the number of members)

Sum of finite series members

The sum of the members of a finite arithmetic progression is called an arithmetic series.

Using our example, consider the sum:

21+23+25+27+29+31+33+35

This sum can be found quickly by taking the number n of terms being added (here 8), multiplying by the sum of the first and last number in the progression (here 21 + 35 = 56), and dividing by 2:

n(a1+an)2

8(21+35)

    2

The sum of the 8 members of this series is 224

This series corresponds to the following straight line y=2x+21

Finding the nthelement

a1 =a1+(n-1)*d =21+(1-1)*2 =21

a2 =a1+(n-1)*d =21+(2-1)*2 =23

a3 =a1+(n-1)*d =21+(3-1)*2 =25

a4 =a1+(n-1)*d =21+(4-1)*2 =27

a5 =a1+(n-1)*d =21+(5-1)*2 =29

a6 =a1+(n-1)*d =21+(6-1)*2 =31

a7 =a1+(n-1)*d =21+(7-1)*2 =33

a8 =a1+(n-1)*d =21+(8-1)*2 =35

a9 =a1+(n-1)*d =21+(9-1)*2 =37

a10 =a1+(n-1)*d =21+(10-1)*2 =39

a11 =a1+(n-1)*d =21+(11-1)*2 =41

a12 =a1+(n-1)*d =21+(12-1)*2 =43

a13 =a1+(n-1)*d =21+(13-1)*2 =45

a14 =a1+(n-1)*d =21+(14-1)*2 =47

a15 =a1+(n-1)*d =21+(15-1)*2 =49

a16 =a1+(n-1)*d =21+(16-1)*2 =51

a17 =a1+(n-1)*d =21+(17-1)*2 =53

a18 =a1+(n-1)*d =21+(18-1)*2 =55

a19 =a1+(n-1)*d =21+(19-1)*2 =57

a20 =a1+(n-1)*d =21+(20-1)*2 =59

a21 =a1+(n-1)*d =21+(21-1)*2 =61

a22 =a1+(n-1)*d =21+(22-1)*2 =63

a23 =a1+(n-1)*d =21+(23-1)*2 =65

a24 =a1+(n-1)*d =21+(24-1)*2 =67

a25 =a1+(n-1)*d =21+(25-1)*2 =69

a26 =a1+(n-1)*d =21+(26-1)*2 =71

a27 =a1+(n-1)*d =21+(27-1)*2 =73

a28 =a1+(n-1)*d =21+(28-1)*2 =75

a29 =a1+(n-1)*d =21+(29-1)*2 =77

a30 =a1+(n-1)*d =21+(30-1)*2 =79

a31 =a1+(n-1)*d =21+(31-1)*2 =81

a32 =a1+(n-1)*d =21+(32-1)*2 =83

a33 =a1+(n-1)*d =21+(33-1)*2 =85

Similar questions