What is the work due to increase the velocity of a car from 18 km per hour to 90 km per hour, if the mass of the car is 2000 kg
Answers
Answered by
57
Answer:
600kJ
Step by Step Explanation:
According to Work Energy Theorem,
Work Done = Change in Kinetic Energy ( Δ KE )
⇒ Final KE - Initial KE = Δ KE
Lets first convert all the velocities to m/s
1 km/hr = 0.27 m/s
⇒ 18 km/hr = 5 m/s
⇒ 90 km/hr = 25 m/s
Initial Velocity = 5 m/s
⇒ Initial KE = 1/2 mv²
⇒ Initial KE = 1/2 × 2000 kg × 5 × 5 = 25000 J
Final Velocity = 25 m/s
⇒ Final KE = 1/2 mV²
⇒ Final KE = 1/2 × 2000 × 25 × 25 = 625000 J
Δ KE = 625000 J - 25000 J
Δ KE = 6,00,000 J pr 600 kJ
Hence the work done to increase the velocity of the car is 600 kJ.
Hope it helped !!
Anonymous:
Awesome
Answered by
42
:
Given,
Mass of the car = 2000 kg
Initial velocity of the car, v₁ = 18 km/hr = 5 m/s
Final velocity of the car, v₂ = 90 km/hr = 25 m/s
Initial Kinetic Energy, K. E. ₁ = ½ × m × v₁²
K. E. ₁ = ½ × 2000 × 5²
K. E. ₁ = 25000 kg m²/s²
Final Kinetic Energy, K. E. ₂ = ½ × m × v₂²
K. E. ₂ = ½ × 2000 × 25²
K. E. ₂ = 625000 kg m²/s²
By Work - Energy Theorem,
The work done by constant force acting on a body is equal to the change produced in the kinetic energy.
W = ΔK = K. E. ₂ - K. E. ₁
W = ( 625000 - 25000 ) kg m²/ s²
________________________________
W = 600000 kg m²/ s²
________________________________
Given,
Mass of the car = 2000 kg
Initial velocity of the car, v₁ = 18 km/hr = 5 m/s
Final velocity of the car, v₂ = 90 km/hr = 25 m/s
Initial Kinetic Energy, K. E. ₁ = ½ × m × v₁²
K. E. ₁ = ½ × 2000 × 5²
K. E. ₁ = 25000 kg m²/s²
Final Kinetic Energy, K. E. ₂ = ½ × m × v₂²
K. E. ₂ = ½ × 2000 × 25²
K. E. ₂ = 625000 kg m²/s²
By Work - Energy Theorem,
The work done by constant force acting on a body is equal to the change produced in the kinetic energy.
W = ΔK = K. E. ₂ - K. E. ₁
W = ( 625000 - 25000 ) kg m²/ s²
________________________________
W = 600000 kg m²/ s²
________________________________
Similar questions