Math, asked by lumpumshon, 3 months ago

what principle will amount to Rs6400 in one and half year at 5 % simple interest ​

Answers

Answered by nehaliganvit3
1

Step-by-step explanation:

I hope this answer is useful...

Attachments:
Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{Amount = Rs \: 6400} \\ &\sf{Rate \:  =  \: 5 \: \% \: p.a.}\\ &\sf{Time \:  = \dfrac{3}{2}  \: years} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{Principal}  \end{cases}\end{gathered}\end{gathered}

Let Principal be Rs x.

Rate = 5 % per annum

Time = 3/2 years

Amount = Rs 6400

We know, that

★ Formula to find Simple Interest

{\sf{ \pink{\star  \: Simple \: interest \: = \: \dfrac{P \times R \times T}{100}}}}

where,

  • P denotes Principal

  • R denotes Rate

  • T denotes Time

Thus,

{\rm{\ Simple \: interest \: = \: \dfrac{x \times  \cancel5 \times \dfrac{3}{2} }{ \cancel{100}  \:  \:  \: ^{20} }}}

 \rm:  \implies \: {\rm{\ Simple \: interest \: = \: \dfrac{3x}{40}}}

Now,

We know,

 \boxed{ \pink{ \rm \: Amount \:  = \:  Principal \:  +  \: Simple \:  Interest}}

\rm:  \implies \: 6400 \:  = x \:  +  \: \dfrac{3x}{40}

\rm:  \implies \: 6400 \:  =   \: \dfrac{40x + 3x}{40}

\rm:  \implies \: 6400 \:  =   \: \dfrac{43x}{40}

\rm:  \implies \: x \:  =  \dfrac{6400 \times 40}{43}

\rm:  \implies \: x \:  =   \: Rs\: 5953.49

Similar questions