What psychological effect makes notes on a piano that are an octave apart sound the same?
Answers
Answer:
Reading music and playing a musical instrument is a complex activity that comprises motor and multisensory (auditory, visual, and somatosensory) integration in a unique way. Music has also a well-known impact on the emotional state, while it can be a motivating activity. For those reasons, musical training has become a useful framework to study brain plasticity. Our aim was to study the specific effects of musical training vs. the effects of other leisure activities in elderly people. With that purpose we evaluated the impact of piano training on cognitive function, mood and quality of life (QOL) in older adults. A group of participants that received piano lessons and did daily training for 4-month (n = 13) was compared to an age-matched control group (n = 16) that participated in other types of leisure activities (physical exercise, computer lessons, painting lessons, among other). An exhaustive assessment that included neuropsychological tests as well as mood and QOL questionnaires was carried out before starting the piano program and immediately after finishing (4 months later) in the two groups. We found a significant improvement on the piano training group on the Stroop test that measures executive function, inhibitory control and divided attention. Furthermore, a trend indicating an enhancement of visual scanning and motor ability was also found (Trial Making Test part A). Finally, in our study piano lessons decreased depression, induced positive mood states, and improved the psychological and physical QOL of the elderly. Our results suggest that playing piano and learning to read music can be a useful intervention in older adults to promote cognitive reserve (CR) and improve subjective well-being.
Introduction
Decrease in fertility rates and growth in life expectancy have resulted in a dramatic increase of elderly people worldwide. It is estimated that the proportion of people over 60 years old will increase from 10% in 2000 to 21.8% in 2050 in all regions (Lutz et al., 2008). A critical consequence of this rise will be the exponential increase in the prevalence of neurodegenerative diseases and other pathologies common in latter stages of life (Norton et al., 2013). Within this context, the study of strategies to prevent cognitive decline and promote a healthy physical and psychological lifestyle are keystones for the future.
Certain deteriorations in cognitive function are triggered by normal aging and have a significant impact on the lives of elderly people (for a review see Bishop et al., 2010). White matter degeneration in frontal lobes in older adults is associated with attenuated performance in executive function, speed of processing, and memory (Gunning-Dixon and Raz, 2000; Ziegler et al., 2010). Additionally, old adults suffer age-related difficulties in motor abilities (Mattay et al., 2002). Another possible explanation for the decline might be a decreased coordination between large-scale brain systems that are subservient to higher order cognitive functions in the elderly (Andrews-Hanna et al., 2007). However, the aging brain can also initiate compensatory processes to mitigate cognitive decline. For example, there is evidence that older adults show less lateralized activity in the prefrontal cortex during performance of different cognitive tasks (Cabeza, 2002).
In this context, Cognitive Reserve (CR) has become a key concept for the prevention of neurodegenerative diseases and age-related cognitive decline. CR models postulate that the brain actively copes with brain damage by using preexisting cognitive resources or by activating compensatory mechanisms (for reviews see Stern, 2002, 2009). This notion seems to be supported by the observations of cohort studies where individuals had never manifested cognitive impairment during their lives in spite of having advanced Alzheimer's neuropathology discovered at postmortem (Ince, 2001).
Factors that have been shown to contribute significantly in increasing CR and reducing the risk of suffering dementia are educational attainment, occupational achievements, intellectual ability, social interactions, and leisure activities (for a review see Valenzuela and Sachdev, 2006). Specifically, it has been found that late-life cognitive activities (e.g., reading, writing, crossword puzzles, board or card games, group discussions, playing music, among others) may influence CR reducing the onset of accelerated memory decline by 0.18 years in subjects who develop dementia, control
same as above.........