Math, asked by dipti58, 1 month ago

what should be added to 5 4/15 to get 12 3/5? ​

Answers

Answered by MrManure
48

Given :-

  • It is given to find whether which fraction should be added to  \sf 5\frac{4}{15} to get  \sf 12\frac{3}{5}.

Answer :-

Heyo! You can use the following Solution below;

  1. Let's first solve the mixed fractions to improper fractions.

 \sf{5 \frac{4}{15} } \:  \: and \:  \: 12 \frac{3}{5}  \\

 \leadsto \sf{ \frac{79}{15} }   \:  \: and \:  \:  \frac{63}{5} \\

⠀2. Now, we can form a linear equation ⠀⠀⠀to find the number which must be ⠀⠀⠀added to  \sf \frac{79}{15} to ⠀⠀⠀get  \sf \frac{63}{5}.

  \sf{x +  \frac{79}{15}  =  \frac{63}{5} } \\

 \leadsto \sf{x =  \frac{63}{5}  -  \frac{79}{15} } \\

 \leadsto \sf{x =  \frac{63 - 79}{30} } \\

 \leadsto \sf{ x = \frac{ - 16}{30} } \\

 \leadsto \sf{x =  \frac{ \cancel{ - 16}}{ \cancel{30}}} \\

 \leadsto \sf{x =  \frac{ - 8}{15} } \\

 \dashrightarrow Hence,  \bf \frac{-8}{15} must be added to  \sf{5\frac{4}{15}} to get  \sf{12\frac{3}{5}}.

 \\

★ More Information :-

You should always remember;

In Linear Equations;

  1. LHS (Negative) change to RHS (Positive)
  2. LHS (Positive) change to RHS (Negative)
  3. LHS (Multiplication) change to RHS (Division)
  4. LHS (Division) change to RHS (Multiplication)
Answered by ᏚɑvɑgeᏀurL
21

Given :-

It is given to find whether which fraction should be added to \sf 5\frac{4}{15}5154 to get \sf 12\frac{3}{5}1253 .

Answer :-

Heyo! You can use the following Solution below;

Let's first solve the mixed fractions to improper fractions.

\begin{gathered} \sf{5 \frac{4}{15} } \: \: and \: \: 12 \frac{3}{5} \\ \end{gathered}5154and1253

\begin{gathered} \leadsto \sf{ \frac{79}{15} } \: \: and \: \: \frac{63}{5} \\ \end{gathered}⇝1579and563

⠀2. Now, we can form a linear equation ⠀⠀⠀to find the number which must be ⠀⠀⠀added to \sf \frac{79}{15}1579 to ⠀⠀⠀get \sf \frac{63}{5}563 .

\begin{gathered} \sf{x + \frac{79}{15} = \frac{63}{5} } \\ \end{gathered}x+1579=563

\begin{gathered} \leadsto \sf{x = \frac{63}{5} - \frac{79}{15} } \\ \end{gathered}⇝x=563−1579

\begin{gathered} \leadsto \sf{x = \frac{63 - 79}{30} } \\ \end{gathered}⇝x=3063−79

\begin{gathered} \leadsto \sf{ x = \frac{ - 16}{30} } \\ \end{gathered}⇝x=30−16

\begin{gathered} \leadsto \sf{x = \frac{ \cancel{ - 16}}{ \cancel{30}}} \\ \end{gathered}⇝x=30−16

\begin{gathered} \leadsto \sf{x = \frac{ - 8}{15} } \\ \end{gathered}⇝x=15−8

\dashrightarrow⇢ Hence, \bf \frac{-8}{15}15−8 must be added to \sf{5\frac{4}{15}}5154 to get \sf{12\frac{3}{5}}1253 .

\begin{gathered} \\ \end{gathered}

Similar questions