Math, asked by Sonal6966, 11 months ago

What should be added to -7/3 to get 3/7

Answers

Answered by ihrishi
22

Step-by-step explanation:

Let \: us \: add \: x \: to \:   - \frac{7}{3}  \: to \: get \:  \frac{3}{7}  \\  \implies \: - \frac{7}{3}  + x =  \frac{3}{7}  \\  \implies \: x = \frac{3}{7} + \frac{7}{3} \:  \\ \implies \: x = \:  \frac{3 \times 3 + 7 \times 7}{3 \times 7}  \\ \implies \: x = \:  \frac{9 + 49}{21}  \\ \implies \: x = \frac{58}{21}  \\ so \: we \: should \: add \: \frac{58}{21}  \\  \: to \: - \frac{7}{3} \: to \: get \: \frac{3}{7} \:

Answered by AbhijithPrakash
36

Answer:

\dfrac{-7}{3}+x=\dfrac{3}{7}\quad :\quad x=\dfrac{58}{21}\quad \left(\mathrm{Decimal}:\quad x=2.76190\dots \right)

Step-by-step explanation:

\textrm{Let the number to be found be } x \textrm{.}

\textrm{So, our equation will be;}

\dfrac{-7}{3}+x=\dfrac{3}{7}

\gray{\mathrm{Subtract\:}\dfrac{-7}{3}\mathrm{\:from\:both\:sides}}

\dfrac{-7}{3}+x-\dfrac{-7}{3}=\dfrac{3}{7}-\dfrac{-7}{3}

\gray{\mathrm{Simplify}}

\dfrac{-7}{3}+x-\dfrac{-7}{3}=\dfrac{3}{7}-\dfrac{-7}{3}

\mathrm{Simplify\:}\dfrac{-7}{3}+x-\dfrac{-7}{3}:\quad x

\dfrac{-7}{3}+x-\dfrac{-7}{3}

\gray{\mathrm{Add\:similar\:elements:}\:\dfrac{-7}{3}-\dfrac{-7}{3}=0}

=x

\mathrm{Simplify\:}\dfrac{3}{7}-\dfrac{-7}{3}

\dfrac{3}{7}-\dfrac{-7}{3}

\gray{\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{-a}{b}=-\dfrac{a}{b}}

=\dfrac{3}{7}-\left(-\dfrac{7}{3}\right)

\gray{\mathrm{Apply\:rule}\:-\left(-a\right)=a}

=\dfrac{3}{7}+\dfrac{7}{3}

\mathrm{Least\:Common\:Multiplier\:of\:}7,\:3:\quad 21

=\dfrac{9}{21}+\dfrac{49}{21}

\gray{\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}}

=\dfrac{9+49}{21}

\gray{\mathrm{Add\:the\:numbers:}\:9+49=58}

=\dfrac{58}{21}

x=\dfrac{58}{21}

Attachments:
Similar questions