Math, asked by rakshitsinghchauhan5, 9 hours ago

what should be added to
 {x}^{2}  + xy +  {y}^{2}
to obtain
2 {x}^{2}  + 3xy
???​

Answers

Answered by itsmesanyo29
25

 \bold { \red{CLARIFICATION:}}

Question :

 \tt What \: should \: be \: added \: to \: {x}^{2} + xy + {y}^{2}

 \tt to \:  obtain \: 2 {x}^{2} + 3xy

Solution :

Let 'a' be added to the equation

 \tt {x}^{2} + xy + {y}^{2} + a = 2 {x}^{2} + 3xy

 \implies \tt a = 2 {x}^{2} + 3xy - {x}^{2}  -  xy  -  {y}^{2}

Bringing like terms together and cancelling the values,

 \implies \tt a = 2 {x}^{2}  - {x}^{2} + 3xy -  xy  -  {y}^{2}

\implies \tt a = {x}^{2}+ 2xy - {y}^{2}

Therefore,

\tt {x}^{2}+ 2xy - {y}^{2} \: \: Should \: be \: added \: to \: {x}^{2} + xy + {y}^{2}

To get

 \tt2 {x}^{2} + 3xy

 \bold{ \red{VERIFICATION:}}

Let's add,

 \implies \tt ({x}^{2} + xy + {y}^{2}) + ({x}^{2}+ 2xy - {y}^{2})

Bringing similar terms together,

 \implies \tt {x}^{2}   + {x}^{2}+ 2xy + xy - {y}^{2}+ {y}^{2}

We get ,

 \implies \tt2 {x}^{2} + 3xy

Hence proved

\tt {x}^{2}+ 2xy - {y}^{2} \: \: Should \: be \: added \: to \: the \: given \: equation

Similar questions