Math, asked by shritiwadi6791, 19 days ago

What should be the depth of an underground water tank holding 3000liters of water having length 2m and breadth 1m.

Answers

Answered by Anonymous
2

Answer:

we know that 1m cube is 1000 litres

so 3000 litres means 3 m cube

so ans shd be 2*1*x = 3

depth shd be 1.5 m

Answered by Anonymous
13

Answer:

Question :

What should be the depth of an underground water tank holding 3000liters of water having length 2m and breadth 1m.

\begin{gathered}\end{gathered}

Given :

  • => Lenght of underground tank = 2m
  • => Breadth of underground tank = 1m
  • => Volume of underground water tank = 3000 litre

\begin{gathered}\end{gathered}

To Find :

  • => Depth of underground tank

\begin{gathered}\end{gathered}

Using Formula :

{\longrightarrow{\small{\underline{\boxed{\sf{V = l \times b \times h}}}}}}

  • => V = Volume of underground tank
  • => l = length of underground tank
  • => b = breadth of underground tank
  • => h = (height/depth) of underground tank

\begin{gathered}\end{gathered}

Solution :

Here,

  • => Volume = 3000 litre
  • => Length = 2 m
  • => Breadth = 1 m
  • => Height/depth = ?

So,

Converting the volume of underground water tank into m³. As we know that 1 litre = 0.001 m³.

  • => 3000 litre
  • => 3000 × 000.1
  • => 3 m³

Now, according to the question,

\dashrightarrow \:  \: {\sf{V = l \times b \times h}}

\dashrightarrow \:  \: {\sf{3 = 2 \times 1 \times h}}

\dashrightarrow \:  \: {\sf{3 = 2 \times h}}

\dashrightarrow \:  \: {\sf{3 = 2h}}

\dashrightarrow \:  \: {\sf{h = 3 \div 2}}

\dashrightarrow \:  \: {\sf{h =  \dfrac{3}{2}}}

\dashrightarrow \:  \: {\sf{h =  \cancel{\dfrac{3}{2}}}}

\dashrightarrow \:  \: {\sf{h = 1.5 \: m}}

Hence, the depth of underground tank is 1.5 m.

\begin{gathered}\end{gathered}

Verification :

\dashrightarrow \:  \: {\sf{V = l \times b \times h}}

\dashrightarrow \:  \: {\sf{3 = 2\times 1 \times 1.5}}

\dashrightarrow \:  \: {\sf{3 =2\times 1.5}}

\dashrightarrow \:  \: {\sf{3  \:  {m}^{3} =3 \:  {m}^{3}}}

\dashrightarrow \:  \: {\sf{LHS=RHS}}

Hence Verified!

\begin{gathered}\end{gathered}

Learn More :

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

 \rule{220pt}{3pt}

Similar questions