Math, asked by vishal6797, 10 months ago


What sum of money will amount to 22050 in 2 years and 23152.50 in 3 years at 5%
per annum compound interest?​

Answers

Answered by Anonymous
14

S O L U T I O N :

\bf{\large{\underline{\bf{Given\::}}}}}

  • Principal, (P) = ?
  • Amount, (A) = Rs.22050
  • Time, (T) = 2 years
  • Amount,(A) = Rs.23152.50
  • Time, (T) = 3 years
  • Rate, (R) = 5% p.a.

\bf{\large{\underline{\bf{To\:find\::}}}}}

The sum of the money.

\bf{\large{\underline{\bf{Explanation\::}}}}}

We know that formula of the compounded annually :

\boxed{\bf{A=P\bigg(1+\frac{R}{100} \bigg)^{n} }}}}

For 2 years :

\longrightarrow\sf{22050=P\bigg(1+\cancel{\dfrac{5}{100}}\bigg)^{2}  }\\\\\\\longrightarrow\sf{22050=P\bigg(1+\dfrac{1}{20} \bigg)^{2} }\\\\\\\longrightarrow\sf{22050=P\bigg(\dfrac{20+1}{20} \bigg)^{2} }\\\\\\\longrightarrow\sf{22050=P\bigg(\dfrac{21}{20} \bigg)^{2} }\\\\\\\longrightarrow\sf{22050=P\times \dfrac{21}{20} \times \dfrac{21}{20} }\\\\\\\longrightarrow\sf{P=\dfrac{\cancel{22050} \times 20\times 20}{\cancel{441}} }\\\\\\\longrightarrow\sf{P=Rs.(50\times 400)}\\\\\\

\longrightarrow\bf{P=Rs.20000}

For 3 years :

\longrightarrow\sf{23152.50=P\bigg(1+\cancel{\dfrac{5}{100}}\bigg)^{3}  }\\\\\\\longrightarrow\sf{23152.50=P\bigg(1+\dfrac{1}{20} \bigg)^{3} }\\\\\\\longrightarrow\sf{23152.50=P\bigg(\dfrac{20+1}{20} \bigg)^{3} }\\\\\\\longrightarrow\sf{23152.50=P\bigg(\dfrac{21}{20} \bigg)^{3} }\\\\\\\longrightarrow\sf{23152.50=P\times \dfrac{21}{20} \times \dfrac{21}{20} \times\dfrac{21}{20}}\\\\\\\longrightarrow\sf{P=\dfrac{\cancel{23152.50} \times 20\times 20\times 20}{\cancel{441}\times 21}}

\longrightarrow\sf{P=\dfrac{52.5\times 20\times 20\times 20}{21} }\\\\\\\longrightarrow\sf{P=\cancel{\dfrac{420000}{21} }}\\\\\\\longrightarrow\bf{P=Rs.20000}

Thus;

The Total sum of the money will be Rs.20000 + Rs.20000 = Rs.40000 .

Similar questions