Math, asked by Celestia01, 2 months ago

what sum will amount to rupees 4000 in 3 years at 6% p.a. compound interest​.​​

Answers

Answered by MiraculousBabe
25

Answer:

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Given:}}}}}}}\end{gathered}

  • ⇢ Principle = Rs.4000
  • ⇢ Rate = 6%
  • ⇢ Time = 3 year

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{To Find:}}}}}}}\end{gathered}

  • ⇢ Amount

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Using Formula:}}}}}}}\end{gathered}

{\dag{\underline{\boxed{\sf{Amount  ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\dag{\underline{\boxed{\sf{Compound \: Interest = Amount- Principle }}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Solution:}}}}}}}\end{gathered}

{\bigstar \:{\underline{\pmb{\frak{\red{Firstly,Finding  \: the  \: Amount }}}}}}

 \quad {:\implies{\sf{Amount  = \bf{P{\bigg(1  +  \dfrac{R}{100}{\bigg)}^{T}}}}}}

Substituting the values.

 \quad {:\implies{\sf{Amount  = \bf{4000{\bigg(1  +  \dfrac{6}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg(1 \times 100  +  \dfrac{6}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{100 + 6}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{106}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg({\cancel{\dfrac{106}{100}}{\bigg)}}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{53}{50}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{53}{50} \times \dfrac{53}{50} \times \dfrac{53}{50}{\bigg)}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{148877}{125000}{\bigg)}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000 \times  \dfrac{148877}{125000}}}}}

\quad {:\implies{\sf{Amount  = \bf{4{\cancel{000}} \times  \dfrac{148877}{125{\cancel{000}}}}}}}

\quad {:\implies{\sf{Amount  = \bf{\dfrac{148877 \times 4}{125}}}}}

\quad {:\implies{\sf{Amount  = \bf{\dfrac{595508}{125}}}}}

\quad {:\implies{\sf{Amount  = \bf{\cancel{\dfrac{595508}{125}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4764.064}}}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{green}{Amount = {Rs.4764.064}}}}}}}\end{gathered}

Hence, The Amount is Rs. 4764.064.

\begin{gathered}\end{gathered}

{\bigstar \:{\underline{\pmb{\frak{\red{ Now,Finding  \: The \:  Compound \:  Interest }}}}}}

  \quad{: \implies{\sf{Compound \: Interest =  \bf{Amount- Principle }}}}

Substituting the values.

  \quad{: \implies{\sf{Compound \: Interest = \bf{4764.064- 4000 }}}}

  \quad{: \implies{\sf{Compound \: Interest =\bf{764.064}}}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{green}{Compound Interest  = Rs.764.064}}}}}}\end{gathered}

Henceforth, The Compound Interest is Rs.764064.

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Learn More:}}}}}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}

Similar questions