what the ans of intigration( e^y cos x) dx
Answers
Answered by
1
Answer:
dydx=ycos(xy)+eysinxeycosx−xcos(xy)
Explanation:
Given: eycosx=1+sin(xy)
We shall use the Product Rule :
If u(x) and v(x) are two functions of x, then ddx(u⋅v)=u⋅dvdx+dudx⋅v
Differentiation: ey⋅(−sinx)+eycosx⋅dydx=0+cos(xy)(xdydx+y)
−eysinx+eycosx⋅dydx=xcos(xy)⋅dydx+ycos(xy)
eycosx⋅dydx−xcos(xy)⋅dydx=ycos(xy)+eysinx
Factoring ouy dydx on the left hand side we have
[eycosx−xcos(xy)]dydx=ycos(xy)+eysinx
Finally, dydx=ycos(xy)+eysinxeycosx−xcos(xy)
dydx=ycos(xy)+eysinxeycosx−xcos(xy)
Explanation:
Given: eycosx=1+sin(xy)
We shall use the Product Rule :
If u(x) and v(x) are two functions of x, then ddx(u⋅v)=u⋅dvdx+dudx⋅v
Differentiation: ey⋅(−sinx)+eycosx⋅dydx=0+cos(xy)(xdydx+y)
−eysinx+eycosx⋅dydx=xcos(xy)⋅dydx+ycos(xy)
eycosx⋅dydx−xcos(xy)⋅dydx=ycos(xy)+eysinx
Factoring ouy dydx on the left hand side we have
[eycosx−xcos(xy)]dydx=ycos(xy)+eysinx
Finally, dydx=ycos(xy)+eysinxeycosx−xcos(xy)
Similar questions