what was the integration of√1-4x^2
Answers
Answered by
0
Answer:
1/4[(sin-¹(2x)+(2x)(√1-4x²)]
Step-by-step explanation:
√1-(2x)²
let 2x=sinq
q=sin-¹(2x)
so 2dx=cosq
dx=cosq/2 dq
now √1-(2x)²=√1-sin²q=cosq
now
int of cosq.cosq/2 dq
int of cos²q/2 dq
1/2 int of cos²q dq
1/2 int of 1/2(1+cos2q)dq
1/4[q+(sin2q/2)]
while
sin2q/2=2sinqcosq/2=sinqcosq
now sinq=2x and cosq=√1-4x²
so
ans will be
1/4[(sin-¹(2x)+(2x)(√1-4x²)]
Similar questions
Math,
6 months ago
English,
6 months ago
Math,
1 year ago
World Languages,
1 year ago
English,
1 year ago