Math, asked by nanre, 1 year ago

What will be the differentiation of sin x ki power sin x ki power sin x ki power sin x upto infinity

Answers

Answered by ani99ket
15
This is how its done
Attachments:
Answered by Swarup1998
7

Given: \mathsf{y={sinx}^{{sinx}^{{sinx}^{...\infty}}}}

Taking log to both sides, we get

\quad \mathsf{log(y)=log(sinx)^{y}}

\to \mathsf{log(y)=y\:log(sinx)}

∴ differentiating both sides w. r. to x, we get

\quad \mathsf{\frac{d}{dx}\{log(y)\}=\frac{d}{dx}\{y\:log(sinx)\}}

\to \mathsf{\frac{1}{y}\:\frac{dy}{dx}=y\:cotx+log(sinx)\:\frac{dy}{dx}}

\quad\quad \mathsf{[\because \frac{d}{dx}\{log(sinx)\}=cotx]}

\to \mathsf{\big[\frac{1}{y}-log(sinx)\big]\:\frac{dy}{dx}=y\:cotx}

\to \mathsf{\frac{dy}{dx}=\frac{y\:cotx}{\frac{1}{y}-log(sinx)}}

\to \mathsf{\frac{dy}{dx}=\frac{y^{2}\:cotx}{1-y\:log(sinx)}}

\to \mathsf{\frac{d}{dx}\big[{sinx}^{{sinx}^{{sinx}^{...\infty}}}\big]=\frac{\big[{sinx}^{{sinx}^{{sinx}^{...\infty}}}\big]^{2}\:cotx}{1-{sinx}^{{sinx}^{{sinx}^{...\infty}}}\:log(sinx)}}

This is the required differentiation.

Related questions:

  • Differentiate Sin inverse of 2 X upon oneplus x square with respect to Cos inverse of 1 - x square upon oneplus x square

https://brainly.in/question/3911961

  • Y is equal to a cos 3x + b sin 3x then find d squarey upon DX square

https://brainly.in/question/16024070

Similar questions