Math, asked by rmsundaram36, 1 year ago

what will be the remainder when 1^2017+2^2017+3^2017+4^2017..................2018^2017/2017

Answers

Answered by sonabrainly
2

This one is good...


2,019 IS NOT PRIME...


I need Euler’s help...


φ(2,019)=2,019×(2/3)×(672/673)=1,344【2019=3×673】


∴Euler said : a^1344 ≡ 1 mod 2019


Now note that 2017=1344+673


I need a pattern..There are 2,017 terms...


Working from the front...


ALL in mod...2019


1^2017≡ 1


2^2017≡2^673


3^2017≡3^673


4^2017≡4^673


.........


99^2017≡99^673


1008^2017≡1008^673


.............…


Working from the back...


2017^2017≡2017^673≡(2019–2)^673≡-(2^673)


2016^2017≡2016^673≡-(3^673)


2015^2017≡2015^673≡-(4^673)....


...............


1920^2017≡(2019–99)^673≡ -(99)^673


1008^2017≡(2019–1011)^673≡-1011^673


1018^2017≡(2019–1001)^2017≡-(1001^673)


1019^2017≡(2019–1000)^673≡-(1000^673).


OBSERVATION :


2nd cancell off with 2017th term


3rd cancell off with 2016th term


.........and so on


∴The only uncanclled term is the FIRST TERM.


∴THE given series ≡ 1 mod 2019


Similar questions