Math, asked by prasant22, 1 year ago

What will be the value of 1/2+√7+1/√7+√10+....+1/√28+√31 .plzz its very urgent guys.going to appear the aakash exams plzzzz

Answers

Answered by InesWalston
14

Answer-


\frac{1}{2+\sqrt{7}} +\frac{1}{\sqrt{7}+\sqrt{10}}+......+\frac{1}{\sqrt{28}+\sqrt{31}}=\frac{\sqrt{31}-2}{3}


Solution-

Given,

=\frac{1}{2+\sqrt{7}} +\frac{1}{\sqrt{7}+\sqrt{10}}+......+\frac{1}{\sqrt{28}+\sqrt{31}}

=\frac{1}{\sqrt{4}+\sqrt{7}} +\frac{1}{\sqrt{7}+\sqrt{10}}+......+\frac{1}{\sqrt{28}+\sqrt{31}}

Multiplying conjugates in each terms,


=\frac{(\sqrt{4}-\sqrt{7})}{(\sqrt{4}+\sqrt{7})(\sqrt{4}-\sqrt{7})} +\frac{(\sqrt{7}-\sqrt{10})}{(\sqrt{7}+\sqrt{10})(\sqrt{7}-\sqrt{10})}+......+\frac{(\sqrt{28}-\sqrt{31})}{(\sqrt{28}+\sqrt{31})(\sqrt{28}-\sqrt{31})}


=\frac{(\sqrt{4}-\sqrt{7})}{(\sqrt{4})^2-(\sqrt{7})^2} +\frac{(\sqrt{7}-\sqrt{10})}{(\sqrt{7})^2-(\sqrt{10})^2}+......+\frac{(\sqrt{28}-\sqrt{31})}{(\sqrt{28})^2-(\sqrt{31})^2}


=\frac{(\sqrt{4}-\sqrt{7})}{4-7} +\frac{(\sqrt{7}-\sqrt{10})}{7-10}+......+\frac{(\sqrt{28}-\sqrt{31})}{28-31}


=\frac{(\sqrt{4}-\sqrt{7})}{-3} +\frac{(\sqrt{7}-\sqrt{10})}{-3}+......+\frac{(\sqrt{28}-\sqrt{31})}{-3}


=\frac{(\sqrt{7}-\sqrt{4})}{3} +\frac{(\sqrt{10}-\sqrt{7})}{3}+......+\frac{(\sqrt{31}-\sqrt{28})}{3}


= \frac{1}{3}[\sqrt{7}-\sqrt{4}}+\sqrt{10}-\sqrt{7}+......+\sqrt{31}-\sqrt{28}]



Only √4 from the first fraction and √31 from the last fraction will remain as it is, and all the other terms will cancelled out each other. So it becomes


= \frac{1}{3}[\sqrt{31}-\sqrt{4}]


= \frac{\sqrt{31}-\sqrt{4}}{3}


= \frac{\sqrt{31}-2}{3}


\therefore \frac{1}{2+\sqrt{7}} +\frac{1}{\sqrt{7}+\sqrt{10}}+......+\frac{1}{\sqrt{28}+\sqrt{31}}=\frac{\sqrt{31}-2}{3}


Similar questions