Math, asked by sidukundusidukundu, 7 months ago

what will be x' s value...?​

Attachments:

Answers

Answered by varadad25
5

Question:

Find the value of x.

\displaystyle{\sf\:3\:\times\:27^x\:=\:9^{x\:+\:4}}

Answer:

The value of x is 7.

Step-by-step-explanation:

The given equation is

\displaystyle{\sf\:3\:\times\:27^x\:=\:9^{x\:+\:4}}

We have to find the value of x.

Now,

\displaystyle{\sf\:3\:\times\:27^x\:=\:9^{x\:+\:4}}

\displaystyle{\implies\sf\:3\:\times\:(\:3^3\:)^x\:=\:(\:3^2\:)^{x\:+\:4}}

We know that,

\displaystyle{\boxed{\pink{\sf\:(\:a^m\:)^n\:=\:a^{m\:\times\:n}\:}}}

\displaystyle{\implies\sf\:3\:\times\:3^{3x}\:=\:3^{2\:(\:x\:+\:4\:)}}

\displaystyle{\implies\sf\:3\:\times\:3^{3x}\:=\:3^{2x\:+\:8}}

We know that,

\displaystyle{\boxed{\blue{\sf\:a^m\:\times\:a^n\:=\:a^{m\:+\:n}}}}

\displaystyle{\implies\sf\:3^{1\:+\:3x}\:=\:3^{2x\:+\:8}}

Bases are equal, so powers should be also equal.

\displaystyle{\therefore\:\sf\:1\:+\:3x\:=\:2x\:+\:8}

\displaystyle{\implies\sf\:3x\:-\:2x\:=\:8\:-\:1}

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:x\:=\:7\:}}}}

∴ The value of x is 7.

Answered by Anonymous
11

7

\huge\green{Given:-}

3 \times  {27}^{x}  =  {9}^{x + 4}

\huge\red{To  \: Find:-}

value \: of \: x

\huge\blue{Solution : }

3 \times  {27}^{x}  =  {9}^{x + 4}

3  \times(  {3}^{3} ) {}^{x}  = ( {3}^{2} ) {}^{x + 4}

  • We know:-

\huge\green{( {a}^{m} ) {}^{n}  =  {a}^{mn} }

3 \times  {3}^{3x}  =  {3}^{2(x + 4)}

3 \times  {3}^{3x}  =  {3}^{2x + 8}

  • We know:-

\huge\pink{ {a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

 {3}^{1 + 3x  \:  \: =   \:  \:  \: {3}^{2x + 8} }

1 + 3x = 2x + 8

3x - 2x = 8 - 1

x = 7

Hence, the value of x is 7.

\huge\red{Thank  \: You}

Similar questions