what would be the volume of oxygen gas that is produced at anode if 0.2ml of hydrogen gas collected at cathode during electrolysis of acidified water?
Answers
Answer:
Microbial electrolysis cells (MECs) can be used for energy recovery and sludge reduction in wastewater treatment. Electric current density, which represents the rate of wastewater treatment and H2 production, is not sufficiently high for practical applications of MECs with real wastewater. Here, a sandwiched electrode-stack design was proposed and examined in a continuous-flow MEC system for more than 100 days to demonstrate enhanced electric current generation with a large number of electrode pairs.
Results
The current density was boosted up to 190 A/m3 or 1.4 A/m2 with 10 electrode pairs stacked in an MEC fed with primary clarifier effluent from a municipal wastewater treatment plant. High organic loading rate (OLR) resulted in high electric current density. The current density increased from 40 to 190 A/m3 when the OLR increased from 0.5–2 kg-COD/m3/day to 8–16 kg-COD/m3/day. In continuous-flow operation with two stacked MECs in series, the biochemical oxygen demand (BOD) removal was 90 ± 2% and the chemical oxygen demand (COD) removal was 75 ± 9%. In addition, the sludge production was 0.06 g-volatile suspended solids (VSS)/g-COD removed at a hydraulic retention time of only 0.63 h. The electric energy consumption was low at 0.40 kWh/kg-COD removed (0.058 kWh/m3-wastewater treated).
Conclusions
The MECs with the stacked electrode design successfully enhanced the electric current generation. The high OLR is important to maintain the high electric current. The organics were removed rapidly and the total suspended solids (TSS) and VSS were reduced substantially in the continuous-flow MEC system. Therefore, the MECs with the stacked electrode design can be used for the rapid and low-sludge treatment of domestic wastewater.