Whats the range of 1/(|sinx|) 1/(|cosx| )
Answers
Answered by
24
let f(x) = 1/|sinx| + 1/|cosx|
we know that AM(Arithmetic mean) is Greater than equal to GM(Geometric mean)use it here .
=> 1/|sinx| + 1/|cosx|______________ >= 1/(|sinx||cosx|)^1/22 so now
1/|sinx|+1/|cosx| >= 2(2cosec2x)^1/2we know |cosec2x|>= 1
so
1/sinx +1/cosx >= 2√2
hence range or
1/|sinx|+|cosx| € [2√2 , ●●)hence range of f(x) is [2√2,●●) .
we know that AM(Arithmetic mean) is Greater than equal to GM(Geometric mean)use it here .
=> 1/|sinx| + 1/|cosx|______________ >= 1/(|sinx||cosx|)^1/22 so now
1/|sinx|+1/|cosx| >= 2(2cosec2x)^1/2we know |cosec2x|>= 1
so
1/sinx +1/cosx >= 2√2
hence range or
1/|sinx|+|cosx| € [2√2 , ●●)hence range of f(x) is [2√2,●●) .
Answered by
6
let the
f(x) = 1/|sinx| + 1/|cosx|
=1/|sinx| + 1/|cosx|
= 1/(|sinx||cosx|)^1/22
1/|sinx|+1/|cosx|
= 2(2cosec2x)^1/22
1/sinx +1/cosx
= 2√2
1/|sinx|+|cosx| ¥ [2√2 , ••)
hence range of f(x) is [2√2,••) .
f(x) = 1/|sinx| + 1/|cosx|
=1/|sinx| + 1/|cosx|
= 1/(|sinx||cosx|)^1/22
1/|sinx|+1/|cosx|
= 2(2cosec2x)^1/22
1/sinx +1/cosx
= 2√2
1/|sinx|+|cosx| ¥ [2√2 , ••)
hence range of f(x) is [2√2,••) .
Similar questions
Social Sciences,
8 months ago
Hindi,
8 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago