When 0°<A<90°, solve the equation: 2cos²A+sin A-2=0
Anonymous:
Okay !
Answers
Answered by
4
Given,
⇒2 cos²A + sin A - 2 = 0
Using identity,
⇒cos²A = ( 1 - sin²A )
⇒ 2( 1 - sin²A ) + sin A - 2 = 0
⇒ 2 - 2 sin²A + sin A - 2 = 0
⇒ - 2 sin²A + sin A = 0
⇒ sin A = 2 sin²A
⇒( sin A ) / 2 = sin²A
We shall solve it by trial and error method,
Let , A = 30°
⇒ ( sin A ) / 2 = sin²A
⇒ ( sin 30° ) / 2 = ( sin 30° )²
⇒( 1/2 ) / 2 = ( 1/2 )² [ sin 30° = ( 1/2 ) ]
⇒ ( 1/4 ) = ( 1/4 )
Hence, A = 30°.
⇒2 cos²A + sin A - 2 = 0
Using identity,
⇒cos²A = ( 1 - sin²A )
⇒ 2( 1 - sin²A ) + sin A - 2 = 0
⇒ 2 - 2 sin²A + sin A - 2 = 0
⇒ - 2 sin²A + sin A = 0
⇒ sin A = 2 sin²A
⇒( sin A ) / 2 = sin²A
We shall solve it by trial and error method,
Let , A = 30°
⇒ ( sin A ) / 2 = sin²A
⇒ ( sin 30° ) / 2 = ( sin 30° )²
⇒( 1/2 ) / 2 = ( 1/2 )² [ sin 30° = ( 1/2 ) ]
⇒ ( 1/4 ) = ( 1/4 )
Hence, A = 30°.
Answered by
0
Answer:
yes the above answer is correct give him thanks
Step-by-step explanation:
mark as brainliest plz
Similar questions