when a = 5+2 under root 6 find the value of number one under root a + 1 upon under root a
Answers
Answered by
0
Hello,
We know that
![a = 5 + 2 \sqrt{6} a = 5 + 2 \sqrt{6}](https://tex.z-dn.net/?f=a+%3D+5+%2B+2+%5Csqrt%7B6%7D+)
Then 1/a will be equal to
After rationalizing...
![\frac{1}{a} = \frac{1}{5 + 2 \sqrt{6} } = 5 - 2 \sqrt{6} \frac{1}{a} = \frac{1}{5 + 2 \sqrt{6} } = 5 - 2 \sqrt{6}](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Ba%7D++%3D++%5Cfrac%7B1%7D%7B5+%2B+2+%5Csqrt%7B6%7D+%7D++%3D+5+-+2+%5Csqrt%7B6%7D+)
Now,
![{( \sqrt{a} + \frac{1}{ \sqrt{a}} ) }^{2} = a + \frac{1}{a} + 2 \times \sqrt{a} \times \frac{1}{ \sqrt{a} } \\ \\ {( \sqrt{a} + \frac{1}{ \sqrt{a}} ) }^{2} = a + \frac{1}{a} +2 \\ \\ {( \sqrt{a} + \frac{1}{ \sqrt{a}} ) }^{2} =5 + 2 \sqrt{6} + 5 - 2 \sqrt{6} + 2 \\ \\ {( \sqrt{a} + \frac{1}{ \sqrt{a}} ) }^{2} =10 + 2 \\ \\ \sqrt{a} + \frac{1}{ \sqrt{a} } = \sqrt{12} = 2 \sqrt{3} {( \sqrt{a} + \frac{1}{ \sqrt{a}} ) }^{2} = a + \frac{1}{a} + 2 \times \sqrt{a} \times \frac{1}{ \sqrt{a} } \\ \\ {( \sqrt{a} + \frac{1}{ \sqrt{a}} ) }^{2} = a + \frac{1}{a} +2 \\ \\ {( \sqrt{a} + \frac{1}{ \sqrt{a}} ) }^{2} =5 + 2 \sqrt{6} + 5 - 2 \sqrt{6} + 2 \\ \\ {( \sqrt{a} + \frac{1}{ \sqrt{a}} ) }^{2} =10 + 2 \\ \\ \sqrt{a} + \frac{1}{ \sqrt{a} } = \sqrt{12} = 2 \sqrt{3}](https://tex.z-dn.net/?f=+%7B%28+%5Csqrt%7Ba%7D+%2B++%5Cfrac%7B1%7D%7B+%5Csqrt%7Ba%7D%7D+%29+%7D%5E%7B2%7D++%3D+a+%2B++%5Cfrac%7B1%7D%7Ba%7D++%2B+2+%5Ctimes++%5Csqrt%7Ba%7D++%5Ctimes++%5Cfrac%7B1%7D%7B+%5Csqrt%7Ba%7D+%7D++%5C%5C++%5C%5C++%7B%28+%5Csqrt%7Ba%7D+%2B++%5Cfrac%7B1%7D%7B+%5Csqrt%7Ba%7D%7D+%29+%7D%5E%7B2%7D++%3D+a+%2B++%5Cfrac%7B1%7D%7Ba%7D++%2B2+%5C%5C++%5C%5C++%7B%28+%5Csqrt%7Ba%7D+%2B++%5Cfrac%7B1%7D%7B+%5Csqrt%7Ba%7D%7D+%29+%7D%5E%7B2%7D++%3D5+%2B+2+%5Csqrt%7B6%7D++%2B+5+-+2+%5Csqrt%7B6%7D++%2B+2+%5C%5C++%5C%5C++%7B%28+%5Csqrt%7Ba%7D+%2B++%5Cfrac%7B1%7D%7B+%5Csqrt%7Ba%7D%7D+%29+%7D%5E%7B2%7D++%3D10+%2B+2+%5C%5C++%5C%5C++%5Csqrt%7Ba%7D++%2B++%5Cfrac%7B1%7D%7B+%5Csqrt%7Ba%7D+%7D++%3D++%5Csqrt%7B12%7D++%3D+2+%5Csqrt%7B3%7D+)
Hope this will be helping you...
We know that
Then 1/a will be equal to
After rationalizing...
Now,
Hope this will be helping you...
Similar questions