When A and
B are two mutually exclusive events such that P(A) = 1/2 and P(B) =
1/3.
Find P(A UB) and P(ANB). *
Answers
Answer:
p Aub is 54 and p anb is 45
Step-by-step explanation:
plz mark as branilist
‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
Given, P(A) = 1/2 ,
P (A ∪ B) = 3/5
and P(B) = p.
(1) For Mutually Exclusive
Given that, the sets A and B are mutually exclusive.
Thus, they do not have any common elements
Therefore, P(A ∩ B) = 0
We know that P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
Substitute the formulas in the above-given formula, we get
3/5 = (1/2) + p – 0
Simplify the expression, we get
(3/5) – (1/2) = p
(6 − 5)/10 = p
1/10 = p
Therefore, p = 1/10
Hence, the value of p is 1/10, if they are mutually exclusive
(ii) For Independent events:
If the two events A & B are independent,
we can write it as P(A ∩ B) = P(A) P(B)
Substitute the values,
= (1/2) × p
= p/2
Now, P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
Now, substitute the values in the formula,
(3/5) = (1/2)+ p – (p/2)
(3/2)– (1/2)= p – (p/2)
(6 − 5)/10 = p/2
1/10 = p/2
p= 2/10
P = 1/5
Thus, the value of p is 1/5, if they are independent
‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗